

Studi Kinerja Drainase pada Kawasan Perumahan Bung Permai Kota Makassar

Andi Amin Latif¹ St Fatmah Arsal² Wudi Darul Putra³

Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muslim Indonesia^{1,2,3} Email: andiamin.latif@umi.ac.id¹ fathma.arsal@umi.ac.id² wudidarulputra@umi.ac.id³

Abstrak

Penelitian ini bertujuan untuk mengkaji kinerja drainase pada Kawasan Perumahan Bung Permai Kota Makassar. Metode penelitian yang digunakan adalah jenis penelitian deskriptif. Pengumpulan data bersumber dari data primer dan data sekunder. Data primer diperoleh melalui pengamatan langsung dan wawancara di lapangan terhadap objek penelitian, sementara data sekunder diperoleh dari berbagai sumber kepustakaan dan institusi terkait. Hasil penelitian ini mengungkapkan beberapa temuan penting. Pertama, dalam konteks kapasitas dan kondisi sistem drainase, hasil perhitungan menunjukkan yariasi kapasitas di berbagai bagian sistem saluran. Kapasitas saluran tertinggi terdapat pada Loop AE, titik AE1-AE2, dengan kapasitas mencapai 2,0628 m³/detik, sedangkan kapasitas terendah terdapat pada Loop BK, titik BKO-BK1, hanya sebesar 0.0231 m³ /detik. Temuan ini menggambarkan bahwa beberapa bagian sistem saluran masih mampu menampung debit air, sementara yang lain sudah tidak dapat menampung. Kedua, dari segi kinerja drainase, evaluasi menggunakan bobot Kinerja Indikator Fisik Drainase menunjukkan bahwa kinerja drainase di Perumahan Bung Permai Kota Makassar dinilai masih kurang. Hal ini dilihat dari total nilai akhir yang kurang dari atau sama dengan 6100. Untuk mengatasi permasalahan ini solusi yang direkomendasikan adalah pelebaran saluran untuk menampung debit air rencana, pemasangan saringan sampah untuk mengurangi limbah, serta peningkatan kesadaran masyarakat agar tidak membuang sampah ke dalam saluran drainase. Selain itu, pemeliharaan rutin pada saluran drainase perlu dilakukan untuk memastikan aliran air tetap lancar, terhindar dari hambatan sedimen, dan optimal dalam menjalankan

Kata Kunci: Kinerja Drainase; Debit Air; Kawasan Bunga Permai Kota Makassar

This work is licensed under a <u>Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional</u>.

PENDAHULUAN

Pesatnya pertumbuhan jumlah penduduk dewasa ini menghadirkan sejumlah masalah serius pada lingkungan perkotaan. Salah satu dampak yang paling mencolok adalah berkurangnya lahan terbuka hijau akibat peningkatan pemukiman, perkantoran, dan area industri. Akibat dari pengalihan fungsi tata guna lahan ini adalah terganggunya keseimbangan aliran air dan sumber daya air tanah. Menurut Suripin, (2004) peningkatan signifikan dalam permintaan lahan, baik untuk keperluan pemukiman maupun aktivitas rumah tangga dapat berdampak pada fungsi retensi dan resapan air. (Zulkarnain, F., & Dewi, I. D. (2020). Seiring dengan urbanisasi yang pesat tidak dapat dipungkiri bahwa tata guna lahan telah mengalami perubahan drastis. Lahan yang semula berfungsi sebagai resapan air hujan kini telah beralih menjadi wilayah perkotaan yang padat penduduk. Situasi ini menjadi semakin mengkhawatirkan di daerah-daerah yang padat penduduknya dimana, Sistem drainase yang di bangun seringkali tidak mampu menampung volume air yang tinggi yang pada akhirnya berimplikasi pada peningkatan volume air yang berpotensi menyebabkan banjir.

Pratama (2022); Rangkuti, & Lubis (2020); Muttaqin (2006) memiliki kesamaan hasil temuan penelitian bahwa, ketika kapasitas saluran air tidak sejajar dengan volume air yang terakumulasi dalam genangan, maka saluran drainase tidak dapat mengalirkan atau menampung sejumlah besaran air yang terperangkap dalam genangan tersebut. Akibatnya,

terciptalah situasi di mana air genangan tidak bisa mengalir secara efisien atau sepenuhnya melalui saluran air yang ada, dan hal ini pada akhirnya dapat meningkatkan risiko bahaya banjir atau genangan yang lebih parah di sekitarnya. Banjir dan genangan air adalah dua fenomena alam yang seringkali disebabkan oleh faktor cuaca ekstrem seperti curah hujan yang tinggi dan badai tropis. Terlepas dari hal tersebut, masalah utamanya ada pada pengaliran air yang dimana, jika saluran air tidak memiliki kapasitas yang cukup untuk mengalirkan air tersebut, maka akan terjadi penumpukan air di berbagai tempat, menciptakan genangan air yang luas dan dalam.

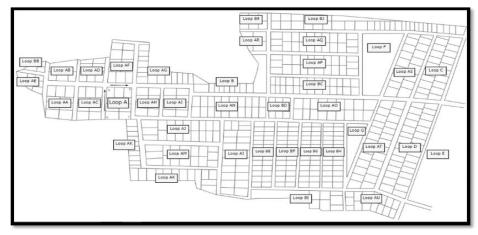
Menyoroti hal tersebut, Imam Subarkah (1978:42) mengidentifikasi beberapa faktor penting yang mempengaruhi pengaliran air dalam suatu daerah terhambat. Faktor-faktor ini meliputi kondisi cuaca dan hujan, topografi dan bentuk geografis daerah aliran sungai, kemiringan daratan di daerah aliran dan bagian dasar sungai, kemampuan tanah untuk menyerap dan mengalirkan air (daya infiltrasi dan perkolasi), tingkat kelembaban tanah, serta suhu udara, angin, dan tingkat penguapan. Selain itu, letak geografis daerah aliran sungai dalam hubungannya dengan arah angin dan posisi geografisnya terhadap faktor-faktor lain seperti daya tampung palung sungai dan karakteristik daerah sekitarnya juga turut berperan dalam mengatur pola pengaliran air di suatu wilayah. Dengan memahami faktor-faktor ini, kita dapat mengelola sumber daya air dan mengantisipasi perubahan dalam tata aliran air yang dapat memengaruhi lingkungan dan aktivitas manusia. dalam (Suryaman, 2013). Disisi lain juga, Rizkiah, R. (2015); Sunarva, & Ramadan, (2017); Krisnohadi, (2011) bahwa Faktor-faktor utama yang menyebabkan banjir adalah tingginya curah hujan serta perubahan penggunaan lahan. Perubahan ini terjadi di dua jenis wilayah, yaitu di daerah perkotaan (yang umumnya disebut sebagai wilayah Hilir) di mana lahan hijau telah berubah menjadi lahan terbangun, dan di daerah pedesaan (yang umumnya disebut sebagai wilayah Hulu) di mana hutan telah beralih menjadi lahan pertanian. Hal ini mengakibatkan berkurangnya kemampuan tanah untuk menyerap air, sehingga aliran air permukaan meningkat.

Untuk itu, Drainase merupakan salah satu alternatif yang dapat mengatasi masalah tersebut. Drainase adalah mengalirkan, menguras, mengeluarkan, atau mengalihkan air. Selain itu, drainase berfungsi sebagai pengatur kelebihan air permukaan yang berguna untuk memperbaiki dan mengurangi masalah seperti tanah becek, genangan air, dan banjir. Di wilayah perkotaan yang padat penduduknya, sistem drainase dibangun untuk mengalirkan air hujan dan air limbah, sehingga menghindari timbulnya genangan air berlebih di berbagai daerah. Ada beberapa alasan mengapa Drainase memiliki peran yang dapat mencegah terjadinya peningkatan volume air di permukaan tanah diantaranya;

- 1. Drainase memiliki peran krusial dalam mengelola air di lingkungan perkotaan maupun pedesaan. Fungsinya mencakup mengendalikan banjir dengan mengalirkan air hujan yang berlebihan, mengurangi risiko kerusakan struktural akibat air, dan mencegah genangan air yang mengganggu aktivitas manusia.
- 2. Drainase berkontribusi dalam pemeliharaan kualitas air dengan menyaring polutan sebelum mencapai badan air utama. Di daerah pedesaan, drainase mendukung pertanian dengan mengatur drainase lahan pertanian, sementara di lingkungan perkotaan, itu mendukung kenyamanan warga dan memelihara ekosistem air tawar yang penting. Dengan perencanaan yang bijaksana, sistem drainase menjadi elemen penting dalam menjaga keseimbangan ekologi dan infrastruktur perkotaan.

Salah satu daerah yang mengalami permasalahan mengenai Drainase adalah Kota Makassar. Meningkatnya pembangunan perumahan serta sarana maupun prasarana umum menyebabkan perubahan tataguna lahan dengan peralihan fungsi dari lahan yang ada. Tertutupnya permukaan tanah asli terhadap lapisan kedap air mengakibatkan bertambahnya

jumlah air yang melimpah akibat hujan yang turun pada daerah tersebut. Akibatnya, di daerah tersebut terjadi genangan/banjir dikarenakan saluran drainase sudah tidak mampu menampung kapasitas air hujan. Dari pengamatan langsung di Perumahan Bung Permai, drainase pada Perumahan Bung Permai tidak merata. Ada daerah di perumahan yang memiliki drainase dengan kapasitas yang besar, ada juga daerah yang memiliki -kapasitas yang kecil dan ada juga drainase yang tidak dapat mengalirkan air karena banyaknya tanah/sampah. Genangan/banjir yang terjadi tentu memberi dampak negatif terhadap warga sekitar Perumahan Bung Permai Kota Makassar.


Penelitian ini telah merumuskan dua permasalahan utama yang menjadi fokus analisis. Pertama, penelitian akan mengeksplorasi dan mengidentifikasi berapa besar kapasitas drainase yang tersedia di Perumahan Bung Permai, Kota Makassar. Permasalahan ini muncul karena dengan cepatnya perkembangan perkotaan, seringkali menyebabkan penurunan area resapan alami untuk air hujan, sehingga penting untuk mengetahui sejauh mana kapasitas drainase yang ada mampu menangani volume air hujan yang mungkin datang. Kedua, penelitian akan memfokuskan diri pada evaluasi kinerja sistem drainase yang telah diterapkan di kawasan tersebut. Permasalahan ini muncul karena pentingnya memastikan bahwa sistem drainase yang ada berfungsi secara efektif dalam mengatasi aliran air hujan dan menghindari terjadinya potensi banjir. Evaluasi ini akan melibatkan aspek-aspek seperti efektivitas saluran drainase, kemampuan dalam menampung air, serta langkah-langkah mitigasi yang telah diterapkan. Oleh karena itu, tujuan dari penelitian ini adalah pertama, untuk melakukan perhitungan dan menentukan kapasitas drainase yang ada di Perumahan Bung Permai, Kota Makassar. Kedua, untuk menilai sejauh mana kinerja sistem drainase di kawasan tersebut dalam menghadapi aliran air hujan dan menghindari potensi banjir.

METODE PENELITIAN

Penelitian ini menggunakan jenis penelitian deskriptif. Dimana jenis penelitian ini bertujuan untuk memberikan gambaran mendalam tentang situasi atau kejadian yang diamati. Selain itu, Metode penelitian ini mencakup pengumpulan data melalui survei lapangan dan pemeriksaan sumber-sumber kepustakaan. Pengumpulan data dalam penelitian ini bersumber dari data primer dan data sekunder. Data primer diperoleh melalui pengamatan langsung dan wawancara di lapangan terhadap objek penelitian. Sementara itu, data sekunder diperoleh dari berbagai sumber kepustakaan dan institusi terkait, seperti Dinas Pekerjaan Umum, Balai Besar Meteorologi Klimatologi dan Geofisika Wilayah IV Makassar, serta Kantor Kelurahan Tamalanrea Jaya, yang mencakup informasi seperti data curah hujan, peta, dan data perumahan.

Teknik analisis data dalam penelitian ini bersifat deskriptif dengan pendekatan kualitatif dan kuantitatif. Analisis deskriptif digunakan untuk menggambarkan kondisi tempat studi dalam bentuk tabel, paparan, sketsa, foto, dan peta. Analisis deskriptif kuantitatif digunakan untuk menilai kapasitas tampung saluran drainase dan membandingkannya dengan debit maksimum yang diprediksi. Selain itu, analisis deskriptif kualitatif digunakan untuk menemukan alternatif penanganan masalah drainase berdasarkan hasil analisis terhadap rumusan masalah yang telah diidentifikasi. Adapun peta lokasi penelitian dapat dilihat pada gambar di bawah ini.

Gambar 1. Lokasi Penelitian Perumahan Bung Permai Kota Makassar

HASIL PENELITIAN DAN PEMBAHASAN Analisa Curah Hujan Rancangan

Dalam analisis ini, penelitian menggunakan data curah hujan harian maksimum yang bersumber dari tiga stasiun pencatat yang dekat dengan daerah yang ditinjau, yaitu Stasiun Panakukang, Stasiun Panjanglingan, dan Stasiun Paotere, dengan periode pencatatan dari tahun 2012 hingga 2021. Hasil perhitungan curah hujan rata-rata dengan metode Aritmatik adalah sebesar 119 mm. Rincian hasil perhitungan curah hujan rata-rata dari tahun 2012 hingga 2021 dengan menggunakan metode Aritmatik dapat dilihat dalam Tabel berikut.

Tabel 1. Curah Hujan Rata-Rata

Tahun	Pos Panakkukang	Pos Panjalingan	Pos Panjalingan Pos Paotere	
2012	115	92	141	116.00
2013	193	270	121	194.60
2014	135	160	138	144.30
2015	139	200	160	166.43
2016	142	88	189	139.57
2017	178	198	156	177.33
2018	145	149	152	148.70
Tahun	Pos Panakkukang	Pos Panjalingan	Pos Paotere	Ŗ (mm)
2019	125	197	107	143.00
2020	160	145	123	142.63
2021	219	243	219	226.97
	1599.53			
	F	Rata - Rata		159.95

Sumber Data: diolah Peneliti, (2023)

Tabel tersebut menyajikan data curah hujan rata-rata tahunan selama periode 2012-2021 di tiga lokasi yang berbeda: Pos Panakkukang, Pos Panjalingan, dan Pos Paotere. Curah hujan diukur dalam milimeter (mm) dan digunakan untuk memantau pola curah hujan dalam periode tersebut. Hasil observasi menunjukkan fluktuasi tahunan yang signifikan dalam curah hujan di ketiga lokasi tersebut. Contohnya, tahun 2013 mencatat curah hujan tertinggi di Pos Panjalingan, sementara tahun 2021 mencatat curah hujan tertinggi di Pos Panakkukang. Ratarata curah hujan selama periode tersebut adalah sekitar 159.95 mm per tahun, dengan nilai total curah hujan selama sepuluh tahun mencapai 1599.53 mm. Data ini penting untuk memahami variasi iklim lokal, mengidentifikasi musim hujan dan kemarau, serta mempertimbangkan dampaknya pada sektor-sektor seperti pertanian, lingkungan, dan infrastruktur di wilayah yang diamati.

Analisa Parameter Statistik Curah Hujan Maksimum

Dari perspektif teoritis, pemilihan jenis distribusi sebaran seringkali bergantung pada parameter-parameter statistik yang diperoleh dari data pengamatan lapangan. Parameter-parameter ini, seperti Cs (koefisien simetri), Cv (koefisien variasi), dan Ck (koefisien keruncingan), memiliki peranan utama dalam mengevaluasi pola dan karakteristik data yang diamati. Analisis parameter statistik ini menjadi landasan penting untuk menentukan model distribusi yang paling sesuai dalam menggambarkan data tersebut. Secara spesifik, dalam konteks Perumahan Bung Permai di Kota Makassar, hasil analisis parameter statistik yang mencakup Cs, Cv, dan Ck tersedia dalam Tabel sebagai berikut:

Tabel 2. Analisis Parameter Statistik

No	Tahun	R	Xi (mm)	Xi-X	(Xi-X)2	(Xi-X)3	(Xi-X)4
1	2012	116.00	116.00	-43.95	1931.90	-84913.25	3732220.27
2	2013	194.60	139.57	-20.39	415.62	-8473.03	172736.81
3	2014	144.30	142.63	-17.32	299.98	-5195.70	89989.44
4	2015	166.43	143.00	-16.95	287.42	-4872.65	82607.68
5	2016	139.57	144.30	-15.65	245.03	-3835.49	60038.15
6	2017	177.33	148.70	-11.25	126.64	-1425.09	16037.06
7	2018	148.70	166.43	6.48	41.99	272.10	1763.19
8	2019	143.00	177.33	17.38	302.06	5249.88	91242.90
9	2020	142.63	194.60	34.65	1200.39	41589.56	1440939.78
10	2021	226.97	226.97	67.01	4490.79	300942.60	20167166.48
	Total		1599.53	0	9342	239339	25854742

n = Jumlah data curah hujan = 10

Sumber Data: diolah Peneliti, (2023)

Tabel di atas mencerminkan hasil analisis statistik terhadap data curah hujan selama periode tertentu. Dalam pemahaman hasil analisis ini, beberapa parameter statistik menjadi penentu utama. Pertama, terdapat 10 data curah hujan yang dianalisis, yang menggambarkan variasi curah hujan selama periode yang diamati. Rata-rata curah hujan (X) sebesar 111,83 mm memberikan gambaran nilai tengah dari data ini. Selanjutnya, standar deviasi (S) sebesar 54,90 mm mengukur sebaran data dari nilai rata-rata, yang menunjukkan tingkat variasi curah hujan selama periode tersebut. Koefisien kepencengan (Cs) sebesar 0,13 mengindikasikan bahwa distribusi data cenderung memiliki simetri positif, sedangkan koefisien kurtosis (Ck) sebesar 2,84 mengungkapkan bahwa distribusi memiliki kurtosis positif, yang berarti ekor distribusi lebih tebal daripada distribusi normal. Terakhir, koefisien keragaman (Cv) sebesar 0,4 menunjukkan bahwa variasi data curah hujan berada pada tingkat sedang. Analisis ini memberikan wawasan tentang karakteristik data curah hujan, yang dapat digunakan dalam pemahaman lebih lanjut tentang pola iklim dan perencanaan terkait sumber daya air serta lingkungan.

Pemilihan Jenis Sebaran

Setelah memperoleh data mengenai parameter G, Ck, dan Cv, langkah selanjutnya adalah membandingkannya dengan kriteria yang telah ditetapkan untuk menentukan jenis distribusi yang paling sesuai, seperti distribusi Normal, distribusi Log Normal, distribusi Gumbel, dan distribusi Log Pearson Type III. Hasil pemilihan jenis distribusi dapat ditemukan dalam tabel 3.

X = Harga rata - rata Xi = 111,83

S = Standar Deviasi = 54,90

Cs = Koefisien Kepencengan = 0.13

Ck = Koefisien Kurtosis = 2,84

Cv = Koefisien Keragaman = 0,4

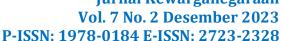
Tabel 3. Pemilihan Jenis Distribusi

Jenis Distribusi	Syarat	Hasil	Keterangan
Normal	Cs = 0, Ck = 3	CS = 0.99	Tidak Memenuhi
Log Normal	Cs = 3, Cv = 1,8 ,Cv = 0.6	Cv = 0.20 Ck = 4.76	Tidak Memenuhi
Jenis Distribusi	Syarat	Hasil	Keterangan
Gumbel	Cs ≈ 1,14, Ck ≈ 5,4002		Tidak Memenuhi
Log Pearson Type III	Bila ketiga kriteria diatas tidak dipenuhi. Maka digunakan jenis distribusi Log Pearson Tipe III		Memenuhi

Sumber Data: diolah Peneliti, (2023)

Tabel 3 adalah hasil analisis parameter statistik yang bertujuan untuk menentukan jenis distribusi yang paling cocok dengan data yang diamati. Hasil analisis ini mengindikasikan bahwa beberapa jenis distribusi seperti Normal, Log Normal, dan Gumbel tidak memenuhi syarat berdasarkan kriteria yang telah ditentukan. Meskipun telah mempertimbangkan berbagai parameter seperti Cs, Cv, dan Ck, tidak ada satu pun distribusi yang sesuai dengan data tersebut. Oleh karena itu, sebagai solusi, jenis distribusi yang paling cocok adalah distribusi Log Pearson Tipe III karena merupakan opsi terbaik yang memenuhi syarat yang telah ditetapkan. Dengan demikian, distribusi ini dapat digunakan sebagai dasar dalam analisis lanjutan terkait data curah hujan tersebut.

Analisa Curah Hujan Rancangan


Analisis curah hujan rancangan menggunakan Metode Log Pearson Tipe III, yang telah memenuhi kriteria jenis distribusi. Hasil analisis curah hujan rancangan dengan metode Log Pearson Tipe III dapat ditemukan dalam Tabel berikut:

Tabel 4. Analisa Curah Hujan Rancangan Menggunakan Metode Log Pearson Type III

No	Tahun	Xi	Log Xi	(Log Xi - LogX)	(log Xi - LogX) ²	(Log Xi - LogX) ³
1	2012	116.00	2.0645	-0.1321	0.0174	-0.0023
2	2013	194.60	2.2891	0.0926	0.0086	0.0008
3	2014	144.30	2.1593	-0.0373	0.0014	-0.0001
4	2015	166.43	2.2212	0.0247	0.0006	0.0000
5	2016	139.57	2.1448	-0.0518	0.0027	-0.0001
6	2017	177.33	2.2488	0.0522	0.0027	0.0001
7	2018	148.70	2.1723	-0.0242	0.0006	0.0000
8	2019	143.00	2.1553	-0.0412	0.0017	-0.0001
9	2020	142.63	2.1542	-0.0423	0.0018	-0.0001
10	2021	226.97	2.3560	0.1594	0.0254	0.0041
Ju	mlah	1599.5	Log X =	2.1966	0.0629	0.0023
	n	= Jumah data curah hujan			10	
L	og X	= Harga rata - rata Log Xi				2.1966
	S	= Standar deviasi				0.08
	Cs		= Koefisio	en Kemencengan		0.0558

Sumber Data: diOlah Peneliti, (2023)

Setelah menganalisa curah hujan rancangan, kemudian menghitung logaritma hujan dengan periode ulang T. Analisa frekuensi curah hujan dan logaritma hujan periode ulang dapat dilihat pada tabel berikut:

Tabel 5. Analisa Frekuensi Curah Hujan Metode Log Pearson Type III

Periode Ulang (Tr) (Tahun)	Skew Curve Factor (Kt)	Logaritma CurahHujan (Log XT)	Besarnya Hujan (XT) (mm)
2	-0.0119	2.1956	156.8751
5	0.8435	2.2671	184.9618
10	1.3008	2.3053	201.9826
25	1.7812	2.3455	221.5544
50	2.0978	2.3720	235.4788
100	2.3795	2.3955	248.6031

Tabel 6. Hasil Analisis Curah Hujan Untuk Periode 2 Tahun, 5 Tahun, 10 Tahun, Dan 25 Tahun

Matada	Kala Ulang				
Metode	2 Tahun	5 Tahun	10 Tahun	25 Tahun	
Log Pearson Tipe III	156.8751	184.9618	201.9826	221.5544	

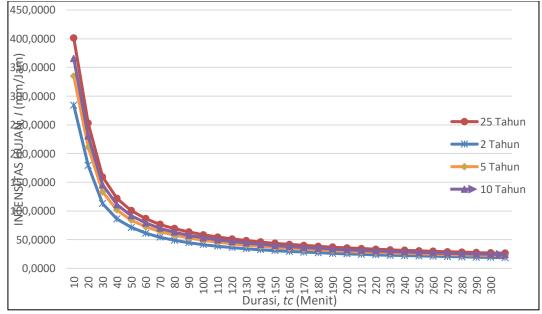
Sumber Data: diolah Peneliti, (2023)

Hasil analisis curah hujan untuk periode ulang 2 tahun, 5 tahun, 10 tahun, dan 25 tahun menggunakan metode Log Pearson Tipe III telah menghasilkan estimasi rata-rata curah hujan yang dapat digunakan dalam berbagai konteks perencanaan. Secara khusus, dalam periode 2 tahun, rata-rata curah hujan yang diharapkan adalah sekitar 156.88 milimeter, sedangkan untuk periode 5 tahun meningkat menjadi sekitar 184.96 milimeter. Pada periode yang lebih panjang, seperti 10 tahun, rata-rata curah hujan diperkirakan mencapai sekitar 201.98 milimeter, dan dalam periode 25 tahun, curah hujan rata-rata yang diharapkan adalah sekitar 221.55 milimeter. Untuk itu, nilai penting dalam perencanaan infrastruktur, pengelolaan sumber daya air, dan mitigasi risiko banjir, karena membantu pihak terkait dalam mempersiapkan diri terhadap perubahan cuaca jangka panjang serta dampaknya pada lingkungan dan masyarakat.

Analisa Intensitas Curah Hujan

Dalam hal Analisa Intensitas Curah Hujan model Penganalisaan intensitas curah hujan dilakukan dengan menggunakan rumus Dr. Mononobe pada berbagai interval waktu konsentrasi, mulai dari 1 jam, 2 jam, 4 jam, hingga 24 jam. Hasil analisis intensitas curah hujan rancangan untuk interval waktu yang berbeda yang dapat dilihat pada tabel di bawah ini:

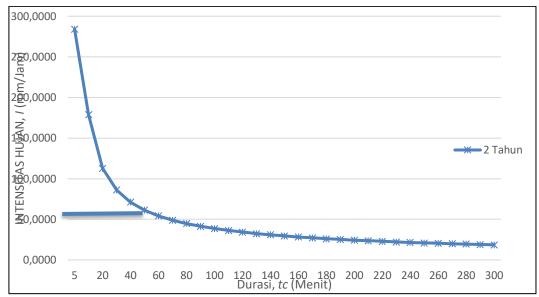
Tabel 7. Analisa Intensitas Curah Hujan Kala Ulang


	Intensitas Curah Hujan					
t (monit)	R2	R5	R10	R25		
t (menit)	156.8751	184.9618	201.9826	221.5544		
5	283.9869	334.8314	365.6438	401.0740		
10	178.9832	211.0280	230.4476	252.7776		
20	112.8045	133.0008	145.2400	159.3135		
30	86.1092	101.5260	110.8688	121.6118		
40	71.0952	83.8240	91.5378	100.4076		
50	61.2771	72.2480	78.8966	86.5415		
60	54.2705	63.9870	69.8753	76.6461		
70	48.9753	57.7437	63.0575	69.1677		
80	44.8079	52.8302	57.6918	63.2821		
90	41.4273	48.8444	53.3392	58.5077		
100	38.6200	45.5345	49.7247	54.5429		
110	36.2447	42.7339	46.6664	51.1883		
120	34.2041	40.3279	44.0390	48.3063		

32.4284	38.2344	41.7528	45.7986
30.8668	36.3931	39.7421	43.5930
29.4805	34.7587	37.9573	41.6353
28.2402	33.2963	36.3604	39.8836
27.1227	31.9787	34.9215	38.3054
26.1096	30.7843	33.6171	36.8746
25.1862	29.6955	32.4282	35.5704
24.3403	28.6982	31.3391	34.3758
23.5621	27.7806	30.3371	33.2767
22.8433	26.9331	29.4116	32.2615
22.1769	26.1475	28.5536	31.3204
21.5572	25.4167	27.7557	30.4451
20.9790	24.7350	27.0112	29.6286
20.4381	24.0973	26.3148	28.8646
19.9308	23.4991	25.6616	28.1482
19.4538	22.9368	25.0475	27.4746
19.0044	22.4070	24.4689	26.8399
18.5802	21.9067	23.9227	26.2407
	30.8668 29.4805 28.2402 27.1227 26.1096 25.1862 24.3403 23.5621 22.8433 22.1769 21.5572 20.9790 20.4381 19.9308 19.4538 19.0044	30.8668 36.3931 29.4805 34.7587 28.2402 33.2963 27.1227 31.9787 26.1096 30.7843 25.1862 29.6955 24.3403 28.6982 23.5621 27.7806 22.8433 26.9331 22.1769 26.1475 21.5572 25.4167 20.9790 24.7350 20.4381 24.0973 19.9308 23.4991 19.4538 22.9368 19.0044 22.4070	30.8668 36.3931 39.7421 29.4805 34.7587 37.9573 28.2402 33.2963 36.3604 27.1227 31.9787 34.9215 26.1096 30.7843 33.6171 25.1862 29.6955 32.4282 24.3403 28.6982 31.3391 23.5621 27.7806 30.3371 22.8433 26.9331 29.4116 22.1769 26.1475 28.5536 21.5572 25.4167 27.7557 20.9790 24.7350 27.0112 20.4381 24.0973 26.3148 19.9308 23.4991 25.6616 19.4538 22.9368 25.0475 19.0044 22.4070 24.4689

Sumber Data: diolah Peneliti, (2023)

Setelah menganalisa analisa intensitas curah hujan, kemudian dibuatkan grafik hubungan untuk kala ulang 2 tahun, 5 tahun, 10 tahun dan 25 tahun. Disimpulkan bahwa kala ulang yang digunakan adalah kala ulang yang digunakan adalah kala ulang hujan 2 tahun.



Gambar 2. Grafik Hubungan Intensitas Curah Hujan Untuk Konsentrasi Kala Ulang 2 Tahun, 5 Tahun, Dan 25 Tahun

Analisa Debit Rancangan

Dari Grafik Analisa Intensitas Curah Hujan kala ulang 2 tahunan didapatkan nilai tc Sehingga diperoleh Intensitas Curah Hujan I = $56.98 \, \text{mm/jam}$. Penentuan debit rancangan tugas akhir ini menggunakan metode rasional.

Gambar 3 Grafik Penentuan Curah Hujan Berdasarkan Nilai Tc

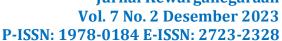
Analisa Hidrolika Saluran Drainase dan Analisis Indikator Fisik Kinerja Sistem Drainase

Analisis hidrolis diperlukan untuk mengetahui kapasitas dari alur saluran terhadap banjir rencana dan untuk menggambarkan profil muka air sepanjang saluran yang ditinjau. Profil muka air yang dihasilkan merupakan dasar untuk menentukan ketinggian dari saluran untuk mengendalikan banjir/genangan. Selanjutnya, Analisis Indikator Fisik Kinerja Sistem Drainase Berdasarkan survey lapangan kondisi saluran dan wawancara kepada RW 007 Perumahan Bung Permai Kota Makassar, terdapat beberapa permasalahan pada saluran drainase. Untuk penilaian terhadap indikator fisik kinerja sistem drainase disesuaikan dengan kondisi lapangan dan wawancara kepada RW 007 Perumahan Bung Permai Kota Makassar.Berdasarkan perhitungan, diperoleh total pengalian nilai dengan bobot sebesar 6070.2. Oleh karena itu, dapat disimpulkan bahwa penilaian terhadap kinerja fisik sistem drainase Perumahan Bung Permai Kota Makassar adalah kurang. Hal ini dikarenakan total pengalian dengan bobot ≤ 6100. Adapun hasil perhitungan indikator dapat dilihat pada tabel berikut.

Tabel 8. Hasil perhitungan indikator fisik kinerja drainase pada kawasan Perumahan Bung Permai Kota Makassar

No	Indikator atau Sub Indikator	Skala Penilaian	Bobot	Nilai	Bobot x Nilai
1	Data fisik prasarana		40		
	1. Sistem Drainase	Baik	11.67	85	991.95
	2. Bangunan Penunjang	Cukup	10	60	600
	3. Waduk atau Kolam Retensi atau Tandon	Cukup	10	60	600
	4. Resapan (Sumur,saluran,bidang)	Kurang	8.33	50	416.5
2	Fungsi Prasarana Sistem Drainase		40		
	5. Berfungsinya Saluran	Cukup	9.67	65	628.55
	6. Berfungsinya Bangunan Penunjang	Cukup	8	65	520
	7. Berfungsinya waduk atau kolam retensi atau tandon	Cukup	9.67	60	580.2
	8. Saluran drainase tidak menjadi tempat sampah	Kurang	6.33	50	316.5

	9. Saluran drainase tidak menjadi tempat penyaluran air yang tidak terolah	Kurang	6.33	50	316.5
3	Kondisi Operasi dan Pemeliharaan Prasarana		20		
	10. Dilaksanakannya operasi dan pemeliharaan sistem saluran	Cukup	10	60	600
	11. Dilaksanakannya operasi dan pemeliharaan bangunan penunjang	Kurang	5	50	250
	12. Dilaksanakannya operasi dan pemeliharaan waduk atau kolam retensi atau tandon	Kurang	5	50	250
	Jumlah				6070.2


Sumber Data: diolah Peneliti, (2023)

KESIMPULAN

Dapat ditarik kesimpulan bahwa Pertama, dalam konteks kapasitas dan kondisi sistem drainase, hasil perhitungan menunjukkan variasi kapasitas di berbagai bagian sistem saluran. Kapasitas saluran tertinggi terdapat pada Loop AE, titik AE1-AE2, dengan kapasitas mencapai 2.0628 m³/detik, sedangkan kapasitas terendah terdapat pada Loop BK, titik BK0-BK1, hanya sebesar 0.0231 m³/detik. Hal ini mengindikasikan bahwa beberapa bagian sistem saluran masih mampu menampung debit air, sementara yang lain sudah tidak mampu menampung. Kedua, dari segi kinerja drainase, evaluasi menggunakan bobot Kinerja Indikator Fisik Drainase menunjukkan bahwa kinerja drainase di Perumahan Bung Permai Kota Makassar dinilai sebagai kurang. Hal ini dilihat dari total nilai akhir yang kurang dari atau sama dengan 6100, sesuai dengan hasil penilaian tiga narasumber yang terlibat dalam penelitian ini. Untuk mengatasi permasalahan ini, solusi yang dapat diambil mencakup pelebaran saluran untuk menampung debit air rencana, pemasangan saringan sampah untuk mengurangi limbah, serta meningkatkan kesadaran masyarakat agar tidak membuang sampah ke dalam saluran drainase. Selain itu, pemeliharaan rutin pada saluran drainase perlu dilakukan untuk memastikan aliran air tetap lancar, terhindar dari hambatan sedimen, dan optimal dalam menjalankan fungsinya.

DAFTAR PUSTAKA

- Krisnohadi, A. (2011). Analisis pengembangan lahan gambut untuk tanaman kelapa sawit Kabupaten Kubu Raya. Jurnal Teknik Perkebunan, 1(1), 1-7.
- Lewi, E. B., Sunarya, U., & Ramadan, D. N. (2017). Sistem Monitoring Ketinggian Air Berbasis Internet of Things Menggunakan Google Firebase. eProceedings of Applied Science, 3(2).
- Muttaqin, A. Y. (2006). Kinerja Sistem Drainase Yang Berkelanjutan Berbasis Partisipasi Masyarakat (Studi Kasus Di Perumahan Josroyo Indah Jaten Kabupaten Karanganyar) (Doctoral Dissertation, Program Pasca Sarjana Universitas Diponegoro).
- Pongtuluran, E. H., & Huda, M. (2019). Evaluasi Kinerja Kapasitas Saluran Drainase Rawan Banjir Kota Balikpapan (Studi Kasus Perumahan Graha Poltekba). Journal Dynamic Saint, 4(2), 841-849.
- Pratama, H. P. (2022). Analisis Banjir Dan Pengendaliannya Di Kawasan Perumnas Bumi Tamalanrea Perma (Doctoral Dissertation, Universitas Bosowa).
- Rangkuti, N. M., & Lubis, K. (2020). Evaluasi Dimensi Dan Kinerja Drainase Kawasan Perkantoran Aceh Tamiang Kuala Simpang (Studi Kasus) (Doctoral Dissertation, Universitas Medan Area).

- Rizkiah, R. (2015). Analisis Faktor-faktor penyebab banjir di kecamatan tikala kota manado. Spasial, 1(1), 105-112.
- Suryaman, H. (2013). Evaluasi Sistem Drainase Kecamatan Ponorogo Kabupaten Ponorogo. Jurnal Kajian Pendidikan Teknik Bangunan, 2(1/JKPTB/13).
- Zulkarnain, F., & Dewi, I. D. (2020). Pkm Pembuatan Saluran Drainase Dusun Ii Jln Inpres Desa Tanjung Gusta Untuk Mengatasi Banjir. Jurnal Prodikmas Hasil Pengabdian Kepada Masyarakat, 5(2), 69-73.