Model Airship Moda Transportasi Jabodetabek Guna Mengatasi Kemacetan Dengan Menggunakan CFD

Authors

  • Shidqi Divreda Sulaeman Universitas Pertahanan Republik Indonesia
  • Sovian Aritonang Universitas Pertahanan Republik Indonesia
  • Sjafrie Sjamsoeddin Universitas Pertahanan Republik Indonesia
  • Gita Ampeiawan Universitas Pertahanan Republik Indonesia

DOI:

https://doi.org/10.31316/jk.v7i1.4767

Abstract

Abstrak

Penelitian ini dilatar belakangi oleh masalah kemacetan yang terjadi di JABODETABEK. Menurut data milik BPS (Badan Pusat Statistik) pada tahun 2021 penduduk DKI Jakarta pada bulan September 2021 mencapai 10,61 juta jiwa. Jumlah tersebut naik 0,45% dibandingkan pada tahun sebelumnya sebanyak 10,56 juta. Kendaraan di Jakarta menurut jenisnya di bagi menjadi 4 kendaraan bermotor diantaranya; mobil penumpang, bus, truk, speda motor. Menurut data yang dikumpulkan oleh BPS terdapat 21,7 juta kendaraan di Jakarta(BPS Jumlah Kendaraan Bermotor Menurut Jenis Kendaraan (unit) di Provinsi DKI Jakarta 2019-2021, 2021). Merujuk pada penelitian yang dilakukan sebelumnya dengan judul “potensi penggunaan airship untuk mendukung pembangunan dengan efisien dan ramah lingkungan”(Subagyo, 2011) penelitian ini bertujuan untuk menambahkan potensi dari penggunaan airship, yaitu sebagai solusi kemacetan transportasi masal. Dewasa ini para peneliti sedang mencari solusi dari kemacetan yang ada di Jakarta. tujuan tersebut diperlukan analisis terhadap aerodinamis dari design platform dengan menggunakan metode computation fluida dynamic (CFD). Penelitian ini menggunakan pendekatan Metode kuantitatif sebagai perhitungan dari aerodinamis pada airship yang dikombinasikan dengan Metode Pendekatan Parent Design (Parent Design Approach) dengan bantuan software Ansys R2 2022. Pendekatan tersebut menghasilkan karakteristik airship yang beroperasi saat ini.

Kata Kunci: Aerodinamika, Airship, Computational Fludia Design

 

Abstract

This research is motivated by the traffic congestion problem in Indonesia, specifically in Jakarta. According to data from the Central Statistics Agency (BPS), the population of Jakarta as of September 2021 is estimated to be 10.61 million people per year. This is an increase of 0.45% compared to the previous year, which had a population of 10.56 million. Road users in Jakarta are divided into four types of motor vehicles: passenger cars, buses, trucks, and motorcycles. According to data collected by the BPS, there are 21.7 million vehicles in Jakarta. Referring to previous research titled "The Potential of Using Airships to Support Development in an Efficient and Environmentally Friendly Manner" (Subagyo, 2011), the authors aim to explore the potential of using airships as a solution to mass transportation congestion. Currently, researchers are looking for solutions to the congestion in Jakarta. In this paper, the authors aim to contribute to finding the best solution to the current problem by providing input on the use of air accommodation using balloons. Specifically, the authors are using the Airlander 10 type balloon being developed in Hamburg. In order to achieve this goal, this research aims to conduct an analysis of the aerodynamics of the platform design using computational fluid dynamics. In order to achieve this goal, this research uses a quantitative method as a calculation of the aerodynamics of the airship combined with the Parent Design Approach method. This approach produces the characteristics of the airship currently in operation. Therefore, the authors would like to present this research to the city of Jakarta as an alternative solution to the traffic congestion problem itself.

Keywords: Aerodynamics, Airship, Computational Fludia Design

References

DAFTAR PUSTAKA

A. De YOUNG, B. . (1939). The Calculation of the Total and Skin Friction Drags of Bodies of Revolution at Zero Incidence. 51–70.

BPS Jumlah Kendaraan Bermotor Menurut Jenis Kendaraan (unit) di Provinsi DKI Jakarta 2019-2021. (2021). BPS Provinsi DKI Jakarta.

Cross, R. (2007). Aerodynamics of a Party Balloon. The Physics Teacher, 45(6), 334–336. https://doi.org/10.1119/1.2768686

Lutz, T., & Wagner, S. (1997). DRAG REDUCTION AND SHAPE. 1–11.

Michele, T., Emilia, R., Di, S. M. I., Emilia, R., Antonio, D., Emilia, R., Di, S. M. I., Emilia, R., Emilia, R., Di, S. M. I., & Emilia, R. (2013). CONSTRUCTAL DESIGN FOR EFFICIENCY : THE CASE OF AIRSHIP DESIGN. 1–12.

Nakayama, A., & Patelt, V. C. (1974). Calculation of the Viscous Resistance of Bodies of Revolution. 8(4), 154–162.

Ping, L., & Wang, X. L. (2018). Aerodynamic characteristics of airship Zhiyuan-1 Aerodynamic Characteristics of Airship Zhiyuan-1. December 2013. https://doi.org/10.1007/s12204-013-1443-9

Purwadi, P., Sunarto, F., Muttaqin, A., & Seto, T. H. (2014). Aplikasi Mobile Zappeline Sebagai Media Teknologi Modifikasi Cuaca (Tmc) Dan Penipisan Polutan Udara (Asap). Jurnal Sains & Teknologi Modifikasi Cuaca, 15(2), 57. https://doi.org/10.29122/jstmc.v15i2.2671

Rehan, M. H., Hamza, A., Qaisar, A., & Rehman, A. (2021). CFD Analysis of Automobile for Efficient Aerodynamic Design using ANSYS. June. https://doi.org/10.13140/RG.2.2.22560.30729

Roy, A. K., & Bhargava, P. K. (2012). CFD Modelling of Wind Flow around Buildings for Wind Energy Conversion. National Conference on Emerging Trends of Energy Conservation in Buildings, November 2012, 370–379.

Subagyo. (2011). Potensi Penggunaan Airship Untuk Mendukung Pembangunan. 404–412.

Wang, Q., Chen, J., Fu, G., & Duan, D. (2009). An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization *. 10(11), 1609–1616. https://doi.org/10.1631/jzus.A0820814

Downloads

Published

2023-04-28

Issue

Section

Articles