Modifikasi Metode Iterasi Behl Tanpa Turunan Kedua Dengan Orde Konvergensi Optimal

Authors

  • Wartono Wartono Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia
  • Mohammad Soleh Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia

DOI:

https://doi.org/10.31316/j.derivat.v9i1.2936

Abstract

Behl iterative method is a third-order of iterative method with three evaluation of functions for solving nonlinear equation. This paper discuss a modification of Behl iterative method by reduced second derivative using hiperbolic function. The aim of this modification is to improve the order of convergence by keep the number of functional evalutions. The result od  study shows that the new iterative method has a fourth-order of convergence and requires three evalualions of funtion with efficiency index as 41/3 » 1,5874. Numerical simulation is given by using six real functions to test the performance of  the modification of  Behl method  which includes  number of iterations, evaluation of function, and absolute error. The performance of new method is compared with Newton method, Newton-Steffensen, Chun-Kim method, and Behl’s  method. The result of numerical simulation shows that the performance of the modification of Behl’s method is better than others.

 

Keyword: Behl  method, order of convergence, efficiency index, evaluation of function, numerical simulation

Author Biographies

Wartono Wartono, Universitas Islam Negeri Sultan Syarif Kasim Riau

Program Studi Matematika

Mohammad Soleh, Universitas Islam Negeri Sultan Syarif Kasim Riau

Program Studi Matematika

References

Abbasbandy, S. 2003. “Improving Newton-Raphson Method for Nonlinear Equation by Modified Adomian Decomposition Methodâ€, Applied Mathematics and Computation. Vol. 145, 887 – 893.

Abbasbandy, S. 2006. “Modified Homotopy Perturbation Method for Nonlinear Equations and Comparison with Adomian Decomposition Methodâ€, Applied Mathematics and Computation. Vol. 172, 431 – 438.

Amat, S., Busquier, S., & Gutierrez, J. M. 2008. “Geometric Construction of Iterative Funcion to Solve Nonlinear Equationâ€, Journal of Computational and Applied Mathematics. Vol. 197, 654658.

Amat, S., Busquier, S., Gutierrez, J. M., and Hernandez, M. A. 2008. “On the Global Convergence of Chebyshev’s Iterative Methodâ€, Journal of Computational and Applied Mathematics. Vol. 220, 17 – 21.

Behl, R., Kanwar, V., & Sharma, K. K. 2012. Another Simple Way of Deriving Several Iterative Functions to Solve Nonlinear Equations, Journal of Applied Mathematics. Vol. 2012, 122.

Burden, R. L.& Faires, J. D. 2011. Numerical Analysis, 9th edition. PWS Publishing Company:Boston.

Chapra, S. C. And Canale, R. P. 2015. Numerical Method for Engineers, 7th edition. McGraw-Hill. Singapore.

Chun, C. 2007. “A One-parameter Family of Third-Order Methods to Solve Nonlinear Equations,†Applied Mathematics and Computation. Vol.189, 126130.

Chun, C & Kim, Y. 2010. â€Several New Third-order Iterative Methods for Solving Nonlinear Equationsâ€, Acta Applicandae Mathematicae, Vol. 109 No. 3, 1053 – 1063.

Chun, C. 2005. “Iterative Method Improving Newton’s Method by the Decomposition Methodâ€, Computers and Mathematics with Applications. Vol. 50, 1559 – 1568.

Hernández, M. A., 1991, A Note on Halley’s Method, Numer. Math. Vol. 59, 273–276.

Javidi, M. 2007. “Iterative Methods to Nonlinear Equationsâ€, Applied Mathematics and Computation. Vol. 193, 360 – 365.

Kung, H. T., & Traub, J. F. 1974. “Optimal Order of One-point and Multipoint Iterationâ€, Journal of the American for Computing Machinery. Vol. 21 No. 4, 643 – 651.

Melman, A. 1997. “Geometry and Convergence of Euler’s and Halley’s Methodsâ€, SIAM Review. Vol. 39 No. 4, 728 – 735.

Noor, M. A. 2010. “Iterative Methods for Nonlinear Equations using Homotopy Perturbation Methodâ€, Applied Mathematics and Informations Sciences, Vol. 4 No. 2, pp. 227 – 235.

Rafiq, A., & Javeria, A. 2009. “New Iterative Method for Solving Nonlinear Equation by using Modified Homotopy Perturbation Methodâ€, Acta Universitatis Epulensis. Vol. 8, 129 – 137.

Shah, F. A. & Noor, M. A. 2014. “Variational Iteration Technique and Some Methods for the Approximate Solution for Nonlinear Equationsâ€, Applied Mathematics and Informations Sciences Letters. Vol. 2 No. 3, 85 – 93.

Sharma, J. R. 2007. “A Family of Third-order Methods to Solve Nonlinear Equations by Quadratic Curves Approximation,†Applied Mathematics and Computation. Vol. 190, 5762.

Scavo, T. R., & Thoo, J. B., 1995, On the Geometry of Halley’s method. American Mathematical Monthly. Vol. 102 No. 5, 417–426.

Sholeh, B., & Wartono, 2019. “Modifikasi Metode Weerakoon-Fernando dengan Orde Konvergensi Empatâ€, Jurnal Sains Matematika dan Statistika. Vol. 5 No. 1, 133 – 140.

Traub, J.F. 1964. Iterative Methods for the Solution of Equations.. Prentice-Hall, Inc. New York.

Xiaojian, Z, 2008. “Modiï¬ed Chebyshev–Halley Methods Free from Second Derivativeâ€, Applied Mathematics and Computation. Vol. 203, 824 – 827.

Yu, X., & Xu, X, 2012. “A New Family of Chebyshev-Halley Like Methods Free from Second Derivativeâ€, Fixed Point Theory. Vol. 13 No. 1, 319 – 325.

Downloads

Published

2022-12-20

Citation Check