Prediksi Kurs Rupiah Terhadap Dolar Dengan FTS-Markov Chain Dan Hidden Markov Model
DOI:
https://doi.org/10.31316/j.derivat.v6i1.334Abstract
Hidden Markov model is a development of the Markov chain where the state cannot be observed directly (hidden), but can only be observed, a set of other observations and combination of fuzzy logic and Markov chain to predict Rupiah exchange rate against the Dollar. The exchange rate of purchasing and exchange rate of saling is divided into four states, namely down large, down small, small rise, and large rise are symbolized respectively S1, S2, S3, and S4. Probability of sequences of observation for 3 days later is computed by forwarding and Backward Algorithm, determine the hidden state sequence using the viterbi algorithm and estimate the HMM parameters using the Baum Welch algorithm. The MAPE result exchange rate of purchase of FTS-Markov Chain is 1,355% and the exchange rate of sale of FTS-Markov Chain is 1,317%. The sequences of observation which optimized within exchange rate of purchase is X* = {S3,S3,S3}, within exchange rate of sale is also X* = {S3,S3,S3}.
Â
Keywords: Exchange rate, FTS-Markov Chain, Hidden Markov ModelDownloads
Published
Issue
Section
Citation Check
License
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).