Consistency Of Definition Of Orthogonality In A Partial Metric Induced By A Metric

Authors

  • Mochammad Hafiizh Mathematics Departmen, Universitas Negeri Malang, Indonesia
  • Nila Puspita Dewi Mathematics Department, Universitas Negeri Malang, Indonesia
  • Sisworo Mathematics Departmen, Universitas Negeri Malang, Indonesia
  • Dahliatul Hasanah Mathematics Department, Universitas Negeri Malang, Indonesia

DOI:

https://doi.org/10.31316/jderivat.v10i1.4620

Abstract

An extension of the metric space in which the distance of the same point is not always zero is called a partial metric space. Orthogonality is the relation of two perpendicular lines at one point of intersection forming a right angle. There are several ways to define orthogonality, including Pythagorean Orthogonality, Isosceles Orthogonality, and Birkhoff-James Orthogonality. The purpose of this research is to study the consistency of the definition of orthogonality in the metric space to the partial metric space. Based on these results, it can be concluded that the partial metric space can be obtained by linear induction from a metric space. Then, in developing the definition of orthogonality to the partial metric space, it can be concluded that the qualified orthogonality is the I-orthogonality and the BJ-orthogonality, while the P-orthogonality does not qualify the consistency of the definition of orthogonality in the partial metric space.

Kata Kunci: Orthogonality, Consistency, and Partial metric space

References

Anton, H. (2011). Elementary Linear Algebra: Aplicatons Version (Tenth Edit). New York: John Wiley and Sond.

Bugajewski, D., & Wang, R. (2020). On the topology of partial metric spaces. Mathematica Slovaca, 70(1), 135–146. https://doi.org/10.1515/ms-2017-0338

Bukatin, M., Kopperman, R., Matthews, S., & Pajoohesh, H. (2009). Partial Metric Spaces. American Mathematical Monthly, 116(8), 708–718. https://doi.org/10.4169/193009709X460831

Chmieliński, J., & Wójcik, P. (2010). On a ρ-orthogonality. Aequationes Mathematicae, 80(1), 45–55. https://doi.org/10.1007/s00010-010-0042-1

Chmieliński, J., & Wójcik, P. (2018). Approximate symmetry of Birkhoff orthogonality. Journal of Mathematical Analysis and Applications, 461(1), 625–640.

Diminnie, C. R. (1983). A New Orthogonality Relation for Normed Linear Spaces. Mathematische Nachrichten, 114(1), 197–203. https://doi.org/10.1002/mana.19831140115

Frechet, M. (1906). Sur Quelques Points Du Calcul Fonctionnel. Monatshefte Fur Mathematik Und Physik, 19(1), 47–48.

Gusnedi. (1999). Matriks dan Ruang Vektor. DIP Universitas Negri Padang.

Han, S., Wu, J., & Zhang, D. (2017). Properties and principles on partial metric spaces. Topology and Its Applications, 44(3), 77–98. https://doi.org/10.1016/j.topol.2017.08.006

Javed, K., Aydi, H., Uddin, F., & Arshad, M. (2021). On Orthogonal Partial b-Metric Spaces with an Application. Journal of Mathematics, 2021(3), 1–7. https://doi.org/10.1155/2021/6692063

Joseph A Gallian. (2017). Contemporary Abstract Algebra (ninth edit). Cengage Learning.

Kir Mehmet, K. H. (2016). Generalized Fixed Point Theorems in Partial Metric Space. European Journal Of Pure And Applied Mathematics, 9(4), 443–451. https://doi.org/10.11568/kjm.2012.20.3.353

Matthews. S.G. (1994). Partial Metric Topology. Topology and Its Applications, 48(3), 183–197.

Mykhaylyuk, V., & Myronyk, V. (2019). Compactness and completeness in partial metric spaces. Topology and Its Applications, 44(3), 1–10. https://doi.org/10.1016/j.topol.2019.106925

Partington, J. R. (1986a). Orthogonality in normed spaces. Bulletin of the Australian Mathematical Society, 33(3), 449–455. https://doi.org/10.1017/S0004972700004020

Partington, J. R. (1986b). Orthogonality in normed spaces. Bulletin of the Australian Mathematical Society, 33(3), 449–455. https://doi.org/10.1017/S0004972700004020

Senapati, T. (2018). Weak orthogonal metric spaces and fixed point results. Kragujevac Journal Of Mathematics, 42(4), 1–12.

Tawfeek, S., Faried, N., & El-Sharkawy, H. A. (2021). Orthogonality in smooth countably normed spaces. Journal of Inequalities and Applications, 50(1), 20. https://doi.org/10.1186/s13660-020-02531-5

Uddin, F., Park, C., Javed, K., Arshad, M., & Lee, J. R. (2021). Orthogonal m-metric spaces and an application to solve integral equations. Advances in Difference Equations, 51(2), 159. https://doi.org/10.1186/s13662-021-03323-x

William F. Ames. (2014). Numerical Methods for Partial Differential Equations (Werner Rheinboldt, Ed.; Third Edit). Academic Press.

Downloads

Published

2023-04-30

Citation Check