Model Stokastik Pada Penyebaran Penyakit Tuberkulosis

Authors

  • Nur Aziezah IPB University, Indonesia
  • Hadi Sumarno Institut Pertanian Bogor, Indonesia
  • Jaharuddin Jaharuddin Institut Pertanian Bogor, Indonesia

DOI:

https://doi.org/10.31316/jderivat.v10i2.5573

Abstract

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. This disease represents a significant global public health challenge. Consequently, a stochastic differential equation model of tuberculosis has been developed. In this context, an analysis examines the impact of complete treatment on the disease-free population distribution, duration of disease-free status, and the probability of remaining disease-free. The analysis shows that as the rate of complete treatment increases, the probability of achieving disease-free status rises, the duration of remaining disease-free shortens, and the number of disease-free individuals grows over time.

Keywords: Complete Treatment, Disease-Free Duration, Stochastic Differential Equations, Tuberculosis

References

Allen, LJS. 2010. An Introduction to Stochastic Processes with Aplications to Biology. Second.

Crofton, John, Norman Horne, and Fred Miller. 2009. Crofton’s Clinical Tuberculosis.

Chandra, TD, and Roudhotillah D. 2021. Analisis Kestabilan Model Penyebaran Penyakit Tuberkulosis dengan Menggunakan Mseitr. Wahana Matematika dan Sains 15(2): 56-74.

Currie, Christine S. M., Katherine Floyd, Brian G. Williams, and Christopher Dye. 2005. “Cost, Affordability and Cost-Effectiveness of Strategies to Control Tuberculosis in Countries with High HIV Prevalence.” BMC Public Health 5(March 2017). doi: 10.1186/1471-2458-5-130.

Mathofani, P. E., and Febriyanti, R. 2020. Faktor-Faktor Yang Berhubungan Dengan Kejadian Penyakit Tuberkulosis (Tb) Paru Di Wilayah Kerja Puskesmas Serang Kota Tahun 2019. 12(1): 1-10.

Nurhana, ID. 2023. Analisis Kestabilan Model SVIQR pada Penyebaran Penyakit Difteri dengan Pengaruh Vaksinasi dan Karantina. 11(02): 265-273.

Van Den Driessche, P., and James Watmough. 2002. “Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission.” Mathematical Biosciences 180(1–2):29–48. doi: 10.1016/S0025-5564(02)00108-6.

Mode, CJ, and CK Sleeman. 2000. Stochastic Processes in Epidemiology.

Ozcaglar, Cagri, Amina Shabbeer, Scott L. Vandenberg, Bülent Yener, and Kristin P. Bennett. 2012. “Epidemiological Models of Mycobacterium Tuberculosis Complex Infections.” Mathematical Biosciences 236(2):77–96. doi: 10.1016/j.mbs.2012.02.003.

Song, Baojun, Carlos Castillo-Chavez, and Juan Pablo Aparicio. 2002. “Tuberculosis Models with Fast and Slow Dynamics: The Role of Close and Casual Contacts.” Mathematical Biosciences 180(1–2):187–205. doi: 10.1016/S0025-5564(02)00112-8.

Downloads

Published

2024-06-12

Citation Check