Pembentukan Portofolio Optimal Saham Dengan Menggunakan Model Portofolio Mean-Variance-Skewness-Kurtosis

Authors

  • La Gubu Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Halu Oleo, Indonesia
  • Muhamad Rashif

DOI:

https://doi.org/10.31316/jderivat.v10i2.6218

Abstract

This paper presents the development of Markowitz's classic Mean-Variance (MV) portfolio model, namely the Mean-Variance-Skewness-Kurtosis (MVSK) portfolio model. The MVSK portfolio model aims to overcome the fact that most stock returns in the capital market do not follow a normal distribution, and there are skewness and excessive kurtosis. The solution of the MVSK portfolio model is determined using the Newton-Raphson method. To see the advantages of the MVSK model, an empirical study was carried out on a portfolio construction using the four best stocks on the Indonesian Stock Exchange, which are included in the LQ45 index group for February-July 2023. The empirical study shows that for risk aversion   the performance of portfolios formed using the MVSK model outperforms portfolios formed using the classical MV model, while for risk aversion   the performance of portfolios formed using the classic MV model outperforms portfolios formed using the MVSK model. In addition, it was also found that for risk aversion , the weight and performance of the portfolio formed using the MVSK model were close to the weight and performance of the portfolio formed using the classic MV model.

Keywods: portofolio, return, risk, portfolio performance, MVSK.

Author Biography

Muhamad Rashif

Fakultas Dakwah dan Komunikasi, Universitas Islam Negeri Sunan Kalijaga

References

Agustina, D., Sari, D.P., Winanda, R.S., Hilmi, M.R., and Fakhriyana, D. 2022. “Comparison of Portfolio Mean-Variance Method with the Mean-Variance-Skewness-Kurtosis Method in Indonesia Stocks” dalam Eksakta, Vol. 22, No. 2, 88-97. Diunduh di https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/316, pada tanggal 7 Desember 2023.

Chen, B., Zhong, J., & Chen, Y. 2020. “A Hybrid Approach for Portfolio Selection with Higher Order Moments: Empirical Evidence from Shanghai Stock Exchange”, dalam Expert Systems with Applications, Vol. 145, 1-26. Diunduh di

https://www.sciencedirect.com/science/article/abs/pii/S0957417419308218, pada tanggal 20 Januari 2024

Díaz, A., Esparcia, C., dan López, R. 2022. “The Diversifying Role of Socially Responsible Investments During the COVID-19 Crisis: A Risk Management and Portfolio Performance Analysis”, dalam Economic Analysis and Policy, Vol. 75, 39–60. Diunduh di https://www.sciencedirect.com/science/article/pii/S0313592622000686, pada tanggal 20 Februari 2024.

Khan, K. I., Waqar, S. M., Naqvi, A., and Ghafoor, M. M. 2020. “Sustainable Portfolio Optimization with Higher-Order Moments of Risk”, dalam Sustainability, Vol. 12, No. 5, 1–14. Diunduh di https://www.mdpi.com/2071-1050/12/5/2006, pada tanggal 20 Januari 2024

Lai, K. K., Yu, L., dan Wang, S. 2006. “Mean-Variance-Skewness-Kurtosis-based Portfolio Optimization”, dalam First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS’06), Vol. 2, 292–297. Diunduh di

https://ieeexplore.ieee.org/abstract/document/4673719/metrics#metrics, pada tanggal 15 Januari 2024

Lu, X., Liu, Q., dan Xue, F. 2019. “Unique Closed-Form Solutions of Portfolio Selection Subject to Mean-Skewness-Normalization Constraints”, dalam Operations Research Perspectives, Vol. 6, 1-15. Diunduh di https://www.econstor.eu/handle/10419/246374, pada tanggal 20 Februari 2024.

Markowitz, H. M. 1952. “Portfolio Selection”, dalam Journal of Finance, Vol. 7, 77-91. Diunduh di

https://www.math.hkust.edu.hk/~maykwok/courses/ma362/07F/markowitz_JF.pdf, pada tanggal 9 Desember 2023

Marques, J. M. E. and Benasciutti, D. 2020. “More on Variance of Fatigue Damage in Non-Gaussian Random Loadings-Effect of Skewness and Kurtosis”, dalam Procedia Structural Integrity, Vol. 25, No. 1, 101–111. Diunduh di

https://www.researchgate.net/publication/341582289_More_on_variance_of_fatigue_damage_in_non-Gaussian_random_loadings_-_effect_of_skewness_and_kurtosis, pada tanggal 4 Februari 2024.

Metaxiotis, K. 2019. “A Mean-Variance-Skewness Portfolio Optimization Model”, dalam International Journal of Computer and Information Engineering, Vol. 13, No. 2, 85–88. Diunduh di

https://publications.waset.org/10010074/a-mean-variance-skewness-portfolio-optimization-model, pada tanggal 15 Januari 2024.

Naqvi, B., Mirza N., Naqvi, W. A., dan Rizvi, S. K. A. 2017. “Portfolio Optimisation with Higher Moments of Risk at the Pakistan Stock Exchange”, dalam Economic Research-Ekonomska Istrazivanja, Vol. 30, No. 2, 1594–1610. Diunduh di

https://www.tandfonline.com/doi/full/10.1080/1331677X.2017.1340182, pada tangga 15 Januari 2024.

Pahade. J. K. dan Jha, M. 2021. “Credibilistic Variance and Skewness of Trapezoidal Fuzzy Variable and Mean-Variance-Skewness Model for Portfolio Selection”, dalam Results in Applied Mathematics, Vol. 11, 1-12. Diunduh di

https://www.sciencedirect.com/science/article/pii/S2590037421000200, pada tanggal 4 Februari 2024.

Sharpe, W. F. 1994. “The Sharpe Ratio”, dalam The Journal of Portfolio Management, Vol. No. 1, 49–58. Diunduh di https://www.pm-research.com/content/iijpormgmt/21/1/49, pada tanggal 7 Desember 2023.

Supandi, E. D. 2017. “Developing of Mean-Variance Portfolio Modeling Using Robust Estimation and Robust Optimization Method”, dalam Disertasi Doktor Matematika Universitas Gadjah Mada University, Yogyakarta, Indonesia.

Downloads

Published

2024-07-09

Citation Check