Kemampuan Pemecahan Masalah Mahasiswa Pada Materi Matematika Optimasi
DOI:
https://doi.org/10.31316/jderivat.v10i2.6858Abstract
In mathematics education, problem-solving is a core element that involves stages for analyzing the problem, planning a solution, applying strategies, and reviewing the results. In the Industrial Engineering Study Program, the ability to problem-solve in optimization mathematics plays a crucial role. This ability can be used as a foundation for minimizing costs, designing production processes, and more. The aim of this research is to determine students' problem-solving abilities in solving problems related to multivariable optimization mathematics analytically without constraints. This study is a descriptive qualitative research and was conducted with six students as research subjects. The instruments used include test questions and interview guidelines. The results show that subjects with low problem-solving abilities tend to only perform two problem-solving stages: understanding the problem and planning the solution. However, they do not execute the plan smoothly and fail to review it. Subjects in the moderate category perform three problem-solving stages, including understanding the problem, choosing a solution strategy, and implementing the plan. Subjects in this category often lack precision in calculations and miss the step of reviewing their answers. Subjects with high problem-solving abilities effectively perform all four problem-solving stages: understanding the problem, creating a solution plan, executing the plan, and reviewing the steps until the final result.
Keyword: Problem-Solving, Optimization Mathematics, Multivariable Function, Analytically
References
Amalia, A. N., & Sari, A. (2018). Evaluasi Signifikansi Metode Optimasi dalam Meminimumkan Biaya Perencanaan Produksi. INFOMATEK: Jurnal Informatika, Manajemen, dan Teknologi, 20(1), 1-8.
Amam, A. (2017). Penilaian Kemampuan Pemecahan Masalah Matematis Siswa SMP. Jurnal Teori dan Riset Matematika (TEOREMA), 2(1), 39-46.
Chapra, S. C., & Canale, R. P. (2015). Numerical Methods for Engineers. New York: McGraw-Hill Education.
Ernaningsih, Z., & Kristiyani, I. M. (2023). Ethnomathematics Exploration Of Eceng Gondok Crafts. MATHLINE: Jurnal Matematika dan Pendidikan Matematika, 8(3), 1183-1196.
Fauzan, H., & Anshari, K. (2024). Studi Literatur: Peran Pembelajaran Matematika Dalam Pembentukan Karakter Siswa. JURRIPEN: Jurnal Riset Rumpun Ilmu Pendidikan, 3(1), 163-175.
Hidayatullah, M. A., Zulkardi, & Susanti, E. (2022). Kemampuan Berpikir Kreatif Siswa dalam Memecahkan Masalah Matematika Konteks Jembatan Gantung Lahat. Jurnal Derivat, 9(2), 213-223.
Kristiyani, I. M., & Ernaningsih, Z. (2024). Eksplorasi Etnomatematika pada Kerajinan Gerabah dan Penerapannya dalam Pembelajaran Kalkulus Integral. Jurnal Axioma: Jurnal Matematika dan Pembelajaran, 9(1), 39-53.
Novitasari, P., & Aisy, A. S. (2024). Kemampuan Pemecahan Masalah Mahasiswa dalam Menyelesaikan Masalah Matematika. Journal of Contemporary Issues in Primary Education (JCIPE), 2(1), 25-30.
Rizqiani, A. S., Sridana, N., Junaidi, & Kurniati, N. (2023). Analisis Kemampuan Pemecahan Masalah Matematis dalam Menyelesaikan Soal Cerita Ditinjau dari Kemampuan Berpikir Kritis Siswa. Jurnal Ilmiah Profesi Pendidikan, 8(1), 232-239.
Rusnawati, D., Utami, W. T., & Senjayawati, E. (2018). Analisis Kesalahan Siswa SMP dalam Menyelesaikan Soal Kemampuan Pemecahan Masalah Matematis Ditinjau dari Tiga Aspek. MAJU: Jurnal Ilmiah Pendidikan Matematika, 5(1), 91-107.
Salmi, F. M., & Subhan, M. (2024). Modifikasi Metode Fletcher-Reeves untuk Penyelesaian Masalah Optimasi Tak Linier Tanpa Kendala. Journal Of Mathematics UNP, 9(1), 153-160.
Sholihah, W. (2024). Analisis Hambatan Belajar Pada Pembuktian Induksi Matematika Dalam Kemampuan Pemahaman Matematis Mahasiswa. Jurnal Derivat, 11(2), 157-167.
Siregar, N. (2022). Kemampuan Pemecahan Masalah Matematis Mahasiswa PGMI Pada Materi Volume Bangun Ruang. Jurnal Derivat, 9(2), 113-122.
Siswanto, E., & Meiliasari. (2024). Kemampuan Pemecahan Masalah pada Pembelajaran Matematika: Systematic Literature Review. Jurnal Riset Pembelajaran Matematika Sekolah (JRPMS), 8(1), 45-59.
Snyman, J. A. (2005). Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. New York: Springer Science+Business Media, Inc.
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2024 Ika Murti Kristiyani
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).