Penyelesaian Persamaan Non Linear Dengan Metode Bagi Dua dan Posisi Palsu Menggunakan Excel Dan Matlab
DOI:
https://doi.org/10.31316/j.derivat.v12i2.7772Abstract
This study aims to compare and evaluate the effectiveness of the Bisection Method and the False Position Method in solving non-linear equations using Excel and MATLAB software. Through literature studies and practical implementations, this study analyzes the characteristics of each method. Evaluations are carried out on the convergence, accuracy, and computational efficiency of both methods on both platforms. A case study of the non-linear equation x = 2x2 + 3x - 5 is solved by both methods in Excel and MATLAB. Based on the numerical method applied, the approximate roots for the non-linear equation are obtained. The results show that the Bisection Method produces the root of x = 0.999878 after 15 iterations, while the False Position Method provides faster convergence results by producing higher accuracy, namely producing the root of x = 0.999940 in only 10 iterations with an error tolerance of 0.0001. The implementation in Excel is done by compiling an iteration table, while MATLAB automates the iteration process. Thus, the False Position Method is superior in convergence speed compared to the Bisection Method. This study provides comprehensive insights into the application of numerical methods in solving non-linear equations and the factors that influence the performance of the methods in different computing environments.
Keywords: Bisection Method, False Position Methot, Non-Linear Equations, Excel, Matlab
References
Anam, K. (2020). Implementasi Metode Numerik Pada Rangkaian Listrik Menggunakan Scilab. Jurnal Penelitian, 5(1), 59–67. https://doi.org/10.46491/jp.v5e1.487.59-67
Pratowi, D. S., Yatnikasari, S., Liana, U. W. M., Agustina, F., & Siregar, A. C. (2023). Peningkatan Keterampilan Pengolahan Data dengan Microsoft Excel terhadap Peserta Didik Madrasah Aliyah Al-Uswah Samarinda. Jurnal Pengabdian Kepada Masyarakat Nusantara (JPkMN).
Novita, D., Sihotang, F. P., & Khairani, S. (2023). PELATIHAN PENGGUNAAN MICROSOFT EXCEL UNTUK MENGOLAH DATA BAGI SISWA/I SMK BINA CIPTA PALEMBANG. Jurnal Pengabdian Kepada Masyarakat, 2(2). https://doi.org/10.35957/fordicate.v2i1
Ermawatii , PujiRahayuii, F. Z. (2017). 4479-Article Text-9992-1-10-20180301 (1). Jurnal Msa, 5(1), 46–57.
Sudirojo, F., Nur, M., Laratmase, A. J., Emanuel, Sabur, F., & Roza, N. (2023). PELATIHAN PENGGUNAAN APLIKASI MICROSOFT EXCEL UNTUK OLAHDATA PENELITIAN DALAM PENYUSUNAN KARYA ILMIAH. Community Development Journal, 4(Juni).
Mukaromah, L. A., & Atsani, M. R. (2024). PENERAPAN METODE BISECTION DAN NEWTON-RAPHSON UNTUK PENYELESAIAN AKAR PERSAMAAN NON-LINIER MENGGUNAKAN MATLAB. Jurnal Teknik Informatika Dan Sistem Informasi (JURTISI), 4(2), 70–74.
Zendrato, M. A., Ivahni, Silalahi, N. D., Manik, R. S., & Suwanto, F. R. (2024). PEMANFAATAN MATLAB UNTUK PEMODELAN DAN SIMULASI SISTEM BIOLOGI MENGGUNAKAN PERSAMAAN DIFERENSIAL. Jurnal Kajian Interdisiplinier.
Mukaromah, I. A., Atsani, M. R., Newton-raphson, M., Akar, P., & Non-linier, P. (2024). PENERAPAN METODE BISECTION DAN NEWTON-RAPHSON UNTUK PENYELESAIAN AKAR PERSAMAAN NON-LINIER MENGGUNAKAN MATLAB. 4(2), 70–74.
Mulyono. (2020). Kajian Sejumlah Metode Tertutup Untuk Mencari Akar-Akar Persamaan Non Linier Secara Iteratif. Prosiding Seminar Nasional Teknik Elektro, 5.
Pandia, W., & Sitepu, I. (2021). Penentuan Akar Persamaan Non Linier Dengan Metode Numerik. Jurnal Mutiara Pendidikan Indonesia, 6(2), 122–129. https://doi.org/10.51544/mutiarapendidik.v6i2.2326
Rozi, S., & Rarasati, N. (2022). Template Metode Numerik Pada Excel Untuk Menemukan Solusi Dari Persamaan Nonlinier. AXIOM : Jurnal Pendidikan Dan Matematika, 11(1), 33. https://doi.org/10.30821/axiom.v11i1.11254
Swasti Maharani, & Edy Suprapto. (2018). ANALISIS NUMERIK BERBASIS GROUP INVESTIGATION UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS. CV. AE MEDIA GRAFIKA. www.aemediagrafika.com
Syafii. (2014). Metode Numerik Algoritma dan Pemograman Visual C++. Asosiasi Penerbit Perguruan Tinggi Indonesia (APPTI).
Febrianti, T., & Harahap, E. (2021). Penggunaan Aplikasi MATLAB Dalam Pembelajaran Program Linear The Use of MATLAB Applications in Linear Programming Learning. Jurnal Matematika, 20(1).
Triatmodjo, B. (2009). Metode Numerik. Beta Offset.
Lubis, T. A. (2025). Penerapan Metode Numerik dalam Penyelesaian Persamaan Diferensial. Pentagon : Jurnal Matematika Dan Ilmu Pengetahuan Alam, 3(1), 131–137. https://doi.org/10.62383/pentagon.v3i1.421
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Utami Fitriani, Salsabilla Ahadiyyah, Ari Wibowo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





