Filosofi Dan Matematika Motif Batik Sindu Melati: Studi Etnografi Pembelajaran Kontekstual
DOI:
https://doi.org/10.31316/j.derivat.v12i2.7787Abstract
Batik is a traditional Indonesian craft that involves the technique of dyeing cloth using wax to create beautiful motifs with certain patterns. This study explores the ethnomathematics of the Batik Sindu Melati motif, because there are many ethnomathematic studies on batik, but none have studied it. This study explores the philosophy of instilling unique cultural insights as a form of conservation of Indonesian culture and the mathematical concepts contained therein. The purpose of the study is to describe the philosophy and mathematical concepts of Batik Sindu Melati. This qualitative ethnographic research, with a research method, answers four ethnographic research questions that must be answered by researchers. Data collection through observation, semi-structured interviews with craftsmen and mathematicians, and documentation. The results of the study, Batik Sindu Melati, contain geometric concepts such as geometric transformation, plane geometry, symmetry, similar and congruent, and arithmetic concepts in the form of ratios. This study concludes that the Sindu Melati Batik motif contains mathematical concepts that can be utilized in learning, especially with an ethnomathematics approach, and is expected to be used for the development of contextual and meaningful mathematics teaching materials, as well as being an effort to conserve the Sindu Melati Batik culture.
Keywords: Batik Sindu Melati, Ethnography, Ethnomathematics
References
Abbott, S. (2015). Undergraduate Texts in Mathematics Understanding Analysis. http://link.springer.com/10.1007/978-1-4939-2712-8
Agustiarini, V., & Permata Wijaya, D. (2021). Pengembangan motif jumputan Palembang dengan pendekatan geometri menggunakan aplikasi GeoGebra. Jurnal Penelitian Sains, 21(3), 163–167.
Annisah, S., Wildaniati, Y., Aryanti, Z., & Wahyuni, S. (2020). GEOMETRI NDAN PENGUKURAN KREATIF DALAM PEMECAHAN MASALAH. In Journal GEEJ (Vol. 7, Issue 2).
Astriandini, M. G., & Kristanto, Y. D. (2021). Kajian Etnomatematika Pola Batik Keraton Surakarta Melalui Analisis Simetri. Mosharafa: Jurnal Pendidikan Matematika, 10(1), 13–24. https://doi.org/10.31980/mosharafa.v10i1.831
Astuti, E. P., Purwoko, R. Y., & Sintiya, M. W. (2019). Bentuk Etnomatematika Pada Batik Adipurwo Dalam Pembelajaran Pola Bilangan. JOURNAL of MATHEMATICS SCIENCE and EDUCATION, 1(2), 1–16. https://doi.org/10.31540/jmse.v1i2.273
Banerjee, S. (1971). Nature ’ s Geometry. 13(4), 21–32.
Cahyaningtiyas, R., Malasari, & Nur, P. (2023). Studi Etnomatematika Pada Motif Batik Troso Jepara Dalam Bentuk Geometri Dua Dimensi. 「集中治療医学レビュー2022-`23-最新主要文献と解説, 2(1), 196–200.
D’Ambrosio, U. (1985). Ethnomathematics and Its Place in the History and Pedagogy of Mathematics. For the Learning of Mathematics, 5(February 1985), 44-48 (in 'Classics').
Dianlestari, & Kusno, K. (2024). Etnomatematika Pada Pola Batik Gumelem Melalui Analisis Geometri Transformasi. Jurnal Derivat: Jurnal Matematika Dan Pendidikan Matematika, 11(2), 81–88. https://doi.org/10.31316/jderivat.v10i2.5737
Ervinawati, Y. (2019). Ethnomathematics: Mathematical Exploration on Batik Gedog Tuban. Jurnal Riset Pendidikan Dan Inovasi Pembelajaran Matematika (JRPIPM), 3(1), 24. https://doi.org/10.26740/jrpipm.v3n1.p24-35
Fernandes, J. A., & Leite, L. (2015). Compreensão do Conceito de Razão por Futuros Educadores e Professores dos Primeiros Anos de Escolaridade. Bolema: Boletim de Educação Matemática, 29(51), 241–262. https://doi.org/10.1590/1980-4415v29n51a13
Firdaussa, S., Nurasih, T., Nining Anita Purwaningsih, Nisa, Z., Kusuma, K. W., & Jaka. (2021). Etnomatematika batik khas Banten, nilai filosofis dan materi Transformasi Geometri bagi siswa SMA. Himpunan: Jurnal Ilmiah Mahasiswa Pendidikan Matematika, 1(2), 169–178.
Hohenwarter, M., & Hohenwarter, J. (2011). Introduction to GeoGebra 4. 80.
Hoyos, V. (2007). Funciones complementarias de los artefactos en el aprendizaje de las transformaciones geométricas en la escuela secundaria. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 24(1), 31–42. https://doi.org/10.5565/rev/ensciencias.3812
Irawan, A., Lestari, M., & Rahayu, W. (2022). Konsep Etnomatematika Batik Tradisional Jawa Sebagai Pengembangan Media Pembelajaran Matematika. Scholaria: Jurnal Pendidikan Dan Kebudayaan, 12(1), 39–45. https://doi.org/10.24246/j.js.2022.v12.i1.p39-45
Ishartono, N., & Ningtyas, D. A. (2021). Exploring Mathematical Concepts in Batik Sidoluhur Solo. International Journal on Emerging Mathematics Education, 5(2), 151. https://doi.org/10.12928/ijeme.v5i2.20660
M. Tuah Lubis, A. N., & Yanti, D. (2018). Identifikasi Etnomatematika Batik Besurek Bengkulu Sebagai Media Dan Alat Peraga Penyampaian Konsep Kekongruenan Dan Kesebangunan. Wahana Didaktika : Jurnal Ilmu Kependidikan, 16(3), 267. https://doi.org/10.31851/wahanadidaktika.v16i3.2103
Mahuda, I. (2020). Eksplorasi Etnomatematika Pada Motif Batik Lebak Dilihat Dari Sisi Nilai Filosofi Dan Konsep Matematis. Lebesgue, 1(1), 29–38. https://doi.org/10.46306/lb.v1i1.10
Milagsita, A. (2024). Apa Pengertian Batik ? Ini Sejarah , Jenis , Motif hingga Maknanya Sejarah Batik.
Norvaisa, R. (2024). Transformasi Geometri dalam Matematika Sekolah. https://doi.org/https://doi.org/10.15388/LMR.2024.38090
Pangesti. (2024). Mengenal Sejarah Motif Batik Sindu Melati Khas Klaten.
Prahmana, R. C. I., & D’Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of yogyakarta, indonesia. Journal on Mathematics Education, 11(3), 439–456. https://doi.org/10.22342/jme.11.3.12949.439-456
Ranti, N. (2022). Inovasi Etnomatematika Budaya Lokal Batik Motif Kawung Yogyakarta. Proseding Didaktis: Seminar Nasional Pendidikan …, 299–310. http://proceedings.upi.edu/index.php/semnaspendas/article/view/2376
Rezhi, K., Yulifar, L., Najib, M., & Indonesia, U. P. (2023). Memahami Langkah-Langkah dalam Penelitian Etnografi dan Etnometodologi etnografi adalah kebudayaan yang memiliki ciri langkah-langkah yang pentingnya suatu penelitian khususnya dalam studi tentang pemaparan langkah- etnometodologi ini menggunakan metode k. 10(2), 271–276.
Rizqoh, Z., Anas, A., & Putra, E. D. (2024). Exploring Ethnomathematics on The Batik Patterns of Jember In Mathematics Concept. Journal of Education and Learning Mathematics Research (JELMaR), 5(1), 27–34. https://doi.org/10.37303/jelmar.v5i1.137
Rubenstein, R., & Schwartz, R. (2006). The Roots of the Branches of Mathematics. 105–107. https://doi.org/10.1090/spec/048/30
Rumah Batik Serasan. (2024). Eksplorasi Kemewahan Batik Sindu Melati dan Maknanya. Rumahbatikserasan.Com.
Safitri, A. H. I., Novaldin, I. D., & Supiarmo, M. G. (2021). Eksplorasi Etnomatematika pada Bangunan Tradisional Uma Lengge. Jurnal Cendekia : Jurnal Pendidikan Matematika, 5(3), 3311–3321. https://doi.org/10.31004/cendekia.v5i3.851
Septi, A. D. W. I., Toha, A. M., Astuti, W., & Bisri, M. O. H. (2024). HARMONY IN THE DIVERSITY OF SOLO BATIK MOTIFS AND. 4(2), 77–88.
Setyawati, H., Vitri, S. A. E., Fakhriyana, D., & Maylani, F. (2023). Systematic Literature Review: Ethnomathematics of Traditional Batik Motifs on Students’ Mathematical ConceptsUnderstanding Ability. Logaritma : Jurnal Ilmu-Ilmu Pendidikan Dan Sains, 11(02), 195–216. https://doi.org/10.24952/logaritma.v11i02.10085
Sianturi, C. E., Kiawati, E. S., Ningsih, E. C., Fitria, N. R., Nurjanah, N., & Kusuma, J. W. (2022). Ethnomathematics: Exploration of Mathematics Through a Variety of Banten Batik Motifs. International Journal of Economy, Education and Entrepreneurship (IJE3), 2(1), 149–157. https://doi.org/10.53067/ije3.v2i1.54
Sugiarni, R., Sari, W., Adetia, E., & Azmy, D. S. (2025). Exploration of Ethnomathematics in Batik Pandanwangi as a Source of Contextual Learning. 7(1), 266–275.
Sukim, S. (2025). Ethnomathematics dalam Batik Sindu Melati Klaten (Bapak Sularto/Jeprik). www.youtube.com. https://www.youtube.com/watch?v=aksoV7frB0E
Suseno, P. (2020). Terungkap, Ini Asal Usul Penamaan Batik Sindu Melati Khas Klaten. Solopos.
Sutama. (2019). Metode penelitian pendidikan kuantitatif, kualitatif, PTK, mix method, R & D. Sukoharjo: CV. Jasmine.
Sutrisno, E. N., & Saija, L. M. (2021). Eksplorasi Etnomatematika Motif Batik Lampung pada Penerapan Materi Grafik Fungsi. Jurnal Pendidikan Matematika Dan Sains, 9(2), 77–82. https://doi.org/10.21831/jpms.v9i2.44943
Unesco. (2009). Report and recommendations of the Subsidiary Body for the examination of nominations to the Representative List of the Intangible Cultural Heritage of Humanity (Decision 4.COM 1.SUB 5). 2010(September).
Vince, J. (2005). Geometry for. Computer. http://www.librarything.com/work/4131645/book/28045411
Wang, Y. (2007). Mathematical Foundations of Software Engineering. 181–275. https://doi.org/10.1201/9780203496091.ch4
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2025 Miftachul Hidayati, Windi Hastuti, Sukimin, Naufal Ishartono

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).





