Perancangan Sistem Pemanas Ruangan dengan Memanfaatkan Energi Panas dari Brine di Lapangan Panas Bumi Wayang Windu

Authors

  • Fhandy Pandey Universitas Pertahanan Republik Indonesia
  • Yanif Dwi Kuntjoro Universitas Pertahanan Republik Indonesia
  • Arifuddin Uksan Universitas Pertahanan Republik Indonesia

DOI:

https://doi.org/10.31316/jk.v6i2.3166

Abstract

Abstrak

Fluida yang diproduksikan dari sumur-sumur lapangan panas bumi bisa berwujud satu fasa air, satu fasa uap ataupun dalam bentuk dua fasa (air dan uap). Pada lapangan-lapangan panas bumi yang memproduksikan dua fasa fluida, fasa uap dan air dipisah dengan menggunakan separator. Uap digunakan untuk menggerakan turbin. Fluida hasil pemisahan (brine) diinjeksikan kembali ke dalam reservoir. Injeksi kembali fluida ke dalam reservoir melalui sumur reinjeksi. Brine hasil pemisahan masih memiliki energi panas dan dapat dimanfaatkan kembali. Temperatur brine yang dimanfaatkan untuk pemanasan ruangan akan berkurang. Jika temperatur brine berkurang hingga melewati nilai tertentu, maka akan menimbulkan terbentuknya endapan (scaling) pada pipa brine tersebut. Nilai minimum temperatur brine perlu diketahui. Nilai minimum berguna untuk mempertimbangkan besar heat loss dari brine yang digunakan untuk pemanasan ruangan. Tujuan kajian ini yaitu merancang alat penukar panas untuk sistem pemanas ruangan menggunakan brine panas bumi. Sistem pemanas ruangan untuk 64 kamar. Hasil perhitungan didapatkan besar area perpindahan panas HE yaitu 113.9 m2 dan Panjang Pipa HE yaitu 57,11 m. Luas penampang ducting untuk setiap ruangan yaitu 0.05 m2. Nilai SSI < 1 menunjukan bahwa brine keluaran dari heat exchanger menuju sumur injeksi tidak terjadi pengendapan silika.

Kata Kunci: energi terbarukan, panas bumi, geotermal, penukar panas, pemanas ruangan

 

Abstract

The fluid produced from geothermal field wells can be in the form of one air phase, one vapor phase, or two phases (water and steam). In geothermal fields that produce two fluid phases, the vapor and water phases are separated using a separator. The steam is used to drive the turbine. The brine is reinjected into the reservoir. Re-injection brine into the reservoir through reinjection wells. Brine still has heat energy and can be reused. Reuse of brine for agriculture, agro-industry, fisheries, tourism, greenhouses, heating, and others. The temperature of the brine used for heating the room will be reduced. If the temperature of the brine is reduced beyond a certain value, it will cause the formation of deposits (scaling) in the brine pipe. The minimum brine temperature value needs to be known. The minimum value is useful for considering the amount of heat loss from the salt water used for heating the room. The purpose of this research is to design a heat exchanger for a space heating system using geothermal brine. The results of the calculation of the HE heat transfer area are 113.9 m2 and the HE pipe length is 57.11 m. The cross-sectional area of ducting for each room is 0.05 m2. SSI value < 1 indicates that the brine output from the heat exchanger to the injection well does not contain silica.

Keywords: Renewable Energy, Brine, Geothermal, Heat Exchanger, Space Heating


References

DAFTAR PUSTAKA

Andris Auliciems and Steven V. Szokolay (2007): Thermal Comfort - Passive And Low Energy Architecture International Design Tools And Techniques, The University Of Queensland Dept. Of Architecture.

Boban, L.; Miše, D.; Herceg, S.; Soldo, V. Application and Design Aspects of Ground Heat Exchangers. Energies 2021, 14, 2134. https://doi.org/10.3390/en14082134

Carolina M. Rodriguez, Marta D'Alessandro. Indoor thermal comfort review: The tropics as the next frontier. Urban Climate, Volume 29, 2019, 100488. ISSN 2212-0955, https://doi.org/10.1016/j.uclim.2019.100488.

Chatenay, Carine., Halldóra Guðmundsdóttir and Thorleikur Jóhannesson. 2014. United Nation University. Geothermal Training Program.

Fournier, Chemical geothermometers and mixing models for geothermal systems, Geothermics, Volume 5, Issues 1–4, 1977, Pages 41-50, ISSN 0375-6505, https://doi.org/10.1016/0375-6505(77)90007-4.

Geothermal Space Heating. Dr. R. Gordon Bloomquist, Ph.D. Washington State University Energy Program. Geothermics Volume 32, Issues 4–6, August–December 2003, Pages 513-526 https://doi.org/10.1016/j.geothermics.2003.06.001

Moran, M.J. and Shapiro, H.N. (2008) Fundamentals of Engineering Thermodynamics. John Wiley & Sons, INC, New York.

Murakami, Hiroshi., Yoshifumi Kato, Nobuo Akutsu. Construction Of The Largest Geothermal Power Plant For Wayang Windu Project, Indonesia. Proceedings World Geothermal Congress 2010

Nugroho, M.A. (2011): A Preliminary Study of Thermal Environment in Malaysia’s Terraced Houses, Journal and Economic Engineering: 2, 25-28

Syah Zikri, Jansent Kajo, Zerry Antro, M. Rahman Raharjo. Project Development of the Wayang Windu Unit 2 Geothermal Power Plant. Proceedings World Geothermal Congress 2010.

Zarrouk, S.J.; Woodhurst, B.C.; Morris, C. Silica scaling in geothermal heat exchangers and its impact on pressure drop and performance: Wairakei binary plant, New Zealand. Geothermics 2014, 51, 445–459

Downloads

Published

2022-07-06