Mekanisme Kerja Vaksin mRNA Untuk Meningkatkan Imunitas Tubuh Terhadap Virus SARS-CoV-2

Authors

  • Dona Suzana Universitas Gunadarma
  • Citra Melina Universitas Gunadarma
  • Gresia Adriel Endrasti Universitas Gunadarma
  • Kriselda Evelyin Ninia Universitas Gunadarma
  • Wildah Benigna Qothoni Universitas Gunadarma

DOI:

https://doi.org/10.31316/jk.v6i2.3659

Abstract

Abstrak

Vaksinasi merupakan sebuah proses untuk mencapai Herd Immunity pada masyarakat. Herd Immunity disini adalah kekebalan kelompok atau kekebalan populasi, secara sederhana vaksin merupakan suatu produk kesehatan yang dirancang untuk meningkatkan kekebalan tubuh manusia dalam melawan infeksi virus dan penyakit. Untuk mencapai herd immunity, diperlukan 70% populasi sasaran vaksinasi COVID-19. Penulisan artikel ini berlandaskan metode library research secara kualitatif yaitu mendefinisikan dan menguraikan mengenai mekanisme kerja vaksin mRNA untuk meningkatkan imunitas tubuh terhadap virus SARS-Cov-2. Vaksin mRNA adalah vaksin dengan jenis baru yang dikembangkan dalam penanganan penyebaran coronavirus. Jenis vaksin ini kandungannya berbeda dengan jenis lainnya. Vaksin mRNA (messenger RNA) ini menghasilkan respons imun seluler dan respon humoral. Respon imun meliputi aktivitas sel T CD8+ sitotoksik yang mampu menghancurkan sel yang terinfeksi SARS—CoV-2, aktivitas sel T CD4+ yang meningkatkan respon sel CD8+ sel T dan sel B, generasi sel T dan B memori yang dapat dengan merespon infeksi SARS-CoV-2 dan aktivitas sel B untuk menghasilkan antibody terhadap SARS-CoV-2.

Kata Kunci: Vaksin, mRNA, Imun, SARS-CoV-2

 Abstract

Vaccination is a process to achieve Herd Immunity in the community. Herd Immunity here is group immunity or population immunity, simply a vaccine is a medical product designed to increase the immunity of the human body against infections and diseases. To achieve herd immunity, 70% of the target population is vaccinated against COVID-19. This article is based on qualitative library research method, including identifying and describing the mechanism of action of mRNA vaccines to increase the body`s immunity against SARS-Cov-2. The mRNA vaccine is a new vaccine developed to treat the spread of coronavirus. This vaccine contains a different dose than other vaccines. This mRNA (messenger RNA) vaccine induces cellular and humoral immune responses. The immune response includes the activity of cytotoxic CD8+ T cells capable of destroying cells infected with SARS-CoV-2, the activity of CD4+ T cells that enhance the response of CD8+ T cells and B cells, generation of memory T and B cells that can respond to SARS-CoV-infection. 2 and B cell activity to produce antibodies against SARS-CoV-2.

Keywords: Vaccine, mRNA, Immune, SARS-CoV-2.

References

DAFTAR PUSTAKA

Amanat, F., & Krammer, F. (2020). SARS-CoV-2 Vaccines: Status Report. Immunity, 52(4), 583–589. https://doi.org/10.1016/j.immuni.2020.03.007

Anonim. (2017). Chapter 3 . Clonal selection. Review Literature And Arts Of The Americas, 67–69.

Anonim. (2018). Theories of antibodies production.

Anonim. (2021a). Clonal Selection of Antibody-Producing Cells. 10–12. Anonim. (2021b). Vaksin Covid-19.

Arneth, B. (2018). Comparison of Burnet’s clonal selection theory with tumor cell- clone development. Theranostics, 8(12), 3392–3399. https://doi.org/10.7150/thno.24083

Baudou, E., Lespine, A., Durrieu, G., André, F., Gandia, P., Durand, C., & Cunat, S. (2020). Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. The New Engl and Journal of Medicine, February(Coorespondance), 2008– 2009.

Bettini, E., & Locci, M. (2021). SARS-CoV-2 mRNA Vaccines: Immunological mechanism and beyond. Vaccines, 9(2), 1–20. https://doi.org/10.3390/vaccines9020147

Bradley, E. S., & McNeel, D. G. (2017). Introduction to RNA Vaccines. Cancer Therapeutic Targets, 1–2, 183–198. https://doi.org/10.1007/978-1-4419-0717- 2_130

Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681

Corbett, K. S., Flynn, B., Foulds, K. E., Francica, J. R., Boyoglu-Barnum, S., Werner, A. P., Flach, B., O’Connell, S., Bock, K. W., Minai, M., Nagata, B. M., Andersen, H., Martinez, D. R., Noe, A. T., Douek, N., Donaldson, M. M., Nji, N. N., Alvarado, G. S., Edwards, D. K., … Graham, B. S. (2020). Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 383(16), 1544–1555. https://doi.org/10.1056/nejmoa2024671

Cox, R. J., & Brokstad, K. A. (2020). Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nature Reviews Immunology, 20(10), 581–582. https://doi.org/10.1038/s41577-020-00436-4

Daniel E. Speiser, M. F. B. (2020). COVID-19 : Mechanisms of Vaccination and Immunity. 1–19.

David H. Spach, M. (2021). COVID-19 mRNA Vaccines. https://doi.org/10.7551/mitpress/10329.003.0072

Fathizadeh, H., Afshar, S., Masoudi, M. R., Gholizadeh, P., Asgharzadeh, M., Ganbarov, K., Köse, Ş., Yousefi, M., & Kafil, H. S. (2021). SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. International Journal of Biological Macromolecules, 188(May), 740–750. https://doi.org/10.1016/j.ijbiomac.2021.08.076

Fros, J. J., & Pijlman, G. P. (2016). Alphavirus infection: Host cell shut-off and inhibition of antiviral responses. Viruses, 8(6). https://doi.org/10.3390/v8060166

Goodman’s Medical Cell Biology. (2021). Cell Biology of the Immune System. Cell Biology of the Immune System, 337–360. https://doi.org/10.1016/b978-0-12- 817927-7.00012-0

Grigoryan, L., & Pulendran, B. (2020). Seminars in Immunology The immunology of SARS-CoV-2 infections and vaccines. Seminars in Immunology, 50(September), 101422. https://doi.org/10.1016/j.smim.2020.101422

He, Z., Ren, L., Yang, J., Guo, L., Feng, L., Ma, C., Wang, X., Leng, Z., Tong, X., Zhou, W., Wang, G., Zhang, T., Guo, Y., Wu, C., Wang, Q., Liu, M., Wang, C., Jia, M., Hu, X., … Wang, C. (2021). Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. The Lancet, 397(10279), 1075–1084. https://doi.org/10.1016/S0140-6736(21)00238-5

Hickey, J. K., Ward, H. E., & Bodie, A. (2021). FDA Approval of the Pfizer- BioNTech COVID-19 Vaccine : Frequently Asked Questions SUMMARY FDA Approval of the Pfizer-BioNTech COVID-19 Vaccine : Frequently Asked Questions.

Hodgkin, P. D. (2018). Modifying clonal selection theory with a probabilistic cell. Immunological Reviews, 285(1), 249–262. https://doi.org/10.1111/imr.12695

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181(2), 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052

Ikawati, Z. (2012). Covid-19 Vccine and Treatment: Latest Update. 1–27. Inchingolo, A. D., Dipalma, G., Inchingolo, A. M., Malcangi, G., Santacroce, L., D’oria, M. T., Isacco, C. G., Bordea, I. R., Candrea, S., Scarano, A., Morandi, B., Fabbro, M. Del, Farronato, M., Tartaglia, G. M., Balzanelli, M. G., Ballini, A., Nucci, L., Lorusso, F., Taschieri, S., & Inchingolo, F. (2021). The 15-months clinical experience of sars-cov-2: A literature review of therapies and adjuvants. In Antioxidants (Vol. 10, Issue 6). https://doi.org/10.3390/antiox10060881

Indah Pitaloka Sari, S. (2020). Perkembangan Teknologi Terkini dalam Mempercepat Produksi Vaksin Covid-19. 5(5), 204–217.

Iwasaki, A., & Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nature Immunology, 16(4), 343–353. https://doi.org/10.1038/ni.3123

Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., McDermott, A., Flach, B., Doria-Rose, N. A., Corbett, K. S., Morabito, K. M., O’Dell, S., Schmidt, S. D., Swanson, P. A., … Beigel, J. H. (2020). An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of Medicine, 383(20), 1920–1931. https://doi.org/10.1056/nejmoa2022483

Jones, I., & Roy, P. (2021). Sputnik V COVID-19 vaccine candidate appears safe and effective. The Lancet, 397(10275), 642–643. https://doi.org/10.1016/S0140-6736(21)00191-4

Kirchdoerfer, R. N., Cottrell, C. A., Wang, N., Pallesen, J., Yassine, H. M., Turner, H. L., Corbett, K. S., Graham, B. S., McLellan, J. S., & Ward, A. B. (2016). Pre- fusion structure of a human coronavirus spike protein. Nature, 531(7592), 118–121. https://doi.org/10.1038/nature17200

Krammer, F. (2020). SARS-CoV-2 vaccines in development. Nature, 586(7830), 516–527. https://doi.org/10.1038/s41586-020-2798-3

Laczkó, D., Hogan, M. J., Toulmin, S. A., Hicks, P., Lederer, K., Gaudette, B. T., Castaño, D., Amanat, F., Muramatsu, H., Oguin, T. H., Ojha, A., Zhang, L., Mu, Z., Parks, R., Manzoni, T. B., Roper, B., Strohmeier, S., Tombácz, I., Arwood, L., … Pardi, N. (2020). A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity, 53(4), 724-732.e7. https://doi.org/10.1016/j.immuni.2020.07.019

Lavarone, C., O’hagan, D. T., Yu, D., Delahaye, N. F., & Ulmer, J. B. (2017). Mechanism of action of mRNA-based vaccines. Expert Review of Vaccines, 16(9), 871–881. https://doi.org/10.1080/14760584.2017.1355245

Lazzaro, S., Giovani, C., Mangiavacchi, S., Magini, D., Maione, D., Baudner, B., Geall, A. J., De Gregorio, E., D’Oro, U., & Buonsanti, C. (2015). CD8 T-cell priming upon mRNA vaccination is restricted to bone-marrow-derived antigen- presenting cells and may involve antigen transfer from myocytes. Immunology, 146(2), 312–326. https://doi.org/10.1111/imm.12505

Lederer, K., Castaño, D., Gómez Atria, D., Oguin, T. H., Wang, S., Manzoni, T. B., Muramatsu, H., Hogan, M. J., Amanat, F., Cherubin, P., Lundgreen, K. A., Tam, Y. K., Fan, S. H. Y., Eisenlohr, L. C., Maillard, I., Weissman, D., Bates, P., Krammer, F., Sempowski, G. D., … Locci, M. (2020). SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity, 53(6), 1281-1295.e5. https://doi.org/10.1016/j.immuni.2020.11.009

Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y

Liang, F., Lindgren, G., Lin, A., Thompson, E. A., Ols, S., Röhss, J., John, S., Hassett, K., Yuzhakov, O., Bahl, K., Brito, L. A., Salter, H., Ciaramella, G., & Loré, K. (2017). Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Molecular Therapy, 25(12), 2635–2647. https://doi.org/10.1016/j.ymthe.2017.08.006

Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272

Lu, J., Lu, G., Tan, S., Xia, J., Xiong, H., Yu, X., Qi, Q., Yu, X., Li, L., Yu, H., Xia, N., Zhang, T., Xu, Y., & Lin, J. (2020). A COVID-19 mRNA vaccine encoding SARS-CoV-2 virus-like particles induces a strong antiviral-like immune response in mice. Cell Research, 30(10), 936–939. https://doi.org/10.1038/s41422-020-00392-7

Mascellino, T. M., Timoteo, F. Di, Angelis, D. M., & Oliva, A. (2021). Overview of the Main Anti-SARS-CoV-2 Vaccines : Mechanism of Action , Efficacy and Safety. 3459–3476.

McNeil, M. M., & DeStefano, F. (2018). Vaccine-associated hypersensitivity. Journal of Allergy and Clinical Immunology, 141(2), 463–472. https://doi.org/10.1016/j.jaci.2017.12.971

Medzhitov, R. (2013). Pattern Recognition Theory and the Launch of Modern Innate Immunity. The Journal of Immunology, 191(9), 4473–4474. https://doi.org/10.4049/jimmunol.1302427

Memoli, M. J., Han, A., Walters, K. A., Czajkowski, L., Reed, S., Athota, R., Rosas, L. A., Cervantes-Medina, A., Park, J. K., Morens, D. M., Kash, J. C., & Taubenberger, J. K. (2020). Influenza a reinfection in sequential human challenge: Implications for protective immunity and “universal†vaccine development. Clinical Infectious Diseases, 70(5), 748–753. https://doi.org/10.1093/cid/ciz281

Meo, S. A., Bukhari, I. A., Akram, J., Meo, A. S., & Klonoff, D. C. (2021). COVID- 19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of pfizer/BioNTech and moderna vaccines. European Review for Medical and Pharmacological Sciences, 25(3), 1663–1679. https://doi.org/10.26355/eurrev_202102_24877

Moticka, E. J. (2016a). Interaction of Lymphocytes with Antigen. A Historical Perspective on Evidence-Based Immunology, 141–150. https://doi.org/10.1016/b978-0-12-398381-7.00017-4

Moticka, E. J. (2016b). The Clonal Selection Theory of Antibody Formation. A Historical Perspective on Evidence-Based Immunology, 47–54. https://doi.org/10.1016/b978-0-12-398381-7.00006-x

Orensteina, W. A., & Ahmedb, R. (2017). Simply put: Vaccination saves lives. Proceedings of the National Academy of Sciences of the United States of America, 114(16), 4031–4033. https://doi.org/10.1073/pnas.1704507114

Orlandini von Niessen, A. G., Poleganov, M. A., Rechner, C., Plaschke, A., Kranz, L. M., Fesser, S., Diken, M., Löwer, M., Vallazza, B., Beissert, T., Bukur, V., Kuhn, A. N., Türeci, Ö., & Sahin, U. (2019). Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Molecular Therapy, 27(4), 824–836. https://doi.org/10.1016/j.ymthe.2018.12.011

Pallesen, J., Wang, N., Corbett, K. S., Wrapp, D., Kirchdoerfer, R. N., Turner, H. L., Cottrell, C. A., Becker, M. M., Wang, L., Shi, W., Kong, W. P., Andres, E. L., Kettenbach, A. N., Denison, M. R., Chappell, J. D., Graham, B. S., Ward, A. B., & McLellan, J. S. (2017). Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences of the United States of America, 114(35), E7348–E7357. https://doi.org/10.1073/pnas.1707304114

Pang, J., Wang, M. X., Ang, I. Y. H., Tan, S. H. X., Lewis, R. F., Chen, J. I. P., Gutierrez, R. A., Gwee, S. X. W., Chua, P. E. Y., Yang, Q., Ng, X. Y., Yap, R. K. S., Tan, H. Y., Teo, Y. Y., Tan, C. C., Cook, A. R., Yap, J. C. H., & Hsu, L.Y. (2020). Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019-nCoV): A systematic review. Journal of Clinical Medicine, 9(3), 1–30. https://doi.org/10.3390/jcm9030623

Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines-a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279. https://doi.org/10.1038/nrd.2017.243

Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., Madden, T. D., Hope, M. J., & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release, 217, 345–351. https://doi.org/10.1016/j.jconrel.2015.08.007

Park, J. W., Lagniton, P. N. P., Liu, Y., & Xu, R. H. (2021). Mrna vaccines for covid- 19: What, why and how. International Journal of Biological Sciences, 17(6), 1446–1460. https://doi.org/10.7150/ijbs.59233

Pascual-Iglesias, A., Canton, J., Ortega-Prieto, A. M., Jimenez-Guardeño, J. M., & Regla-Nava, J. A. (2021). An overview of vaccines against sars-cov-2 in the covid-19 pandemic era. Pathogens, 10(8), 1–21. https://doi.org/10.3390/pathogens10081030

Phan, T. (2020). Novel coronavirus: From discovery to clinical diagnostics. Infection, Genetics and Evolution, 79(January), 104211. https://doi.org/10.1016/j.meegid.2020.104211

Purbasari, A., S, I. S., & Santoso, O. S. (2011). Clonal Selection Algorithm : Bio- Inspired Algorithms Sebagai Clonal Selection Algorithm : Bio-Inspired Algorithms Sebagai Solusi Persoalan Kompleks. December 2013.

Ravichandran, S., Coyle, E. M., Klenow, L., Tang, J., Grubbs, G., Liu, S., Wang, T., Golding, H., & Khurana, S. (2020). Antibody signature induced by SARS-CoV- 2 spike protein immunogens in rabbits. Science Translational Medicine, 12(550), 1–10. https://doi.org/10.1126/SCITRANSLMED.ABC3539

Redfield, R. R., Bunnell, R., Greenspan, A., Kent, C. K., Leahy, M. A., Martinroe, J. C., Spriggs, S. R., Yang, T., Doan, Q. M., King, P. H., Starr, T. M., Yang, M., Jones, T. F., Michelle Bonds, C. E., Matthew Boulton, M. L., Carolyn Brooks, M., Jay Butler, M. C., Caine, V. A., Lyon Daniel, K., … Bobb Swanson, M. (2020). Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices- United States, 2020-21 Influenza Season Morbidity and Mortality Weekly Report Recommendations and Reports Centers for Disease C. Recommendations and Reports, 69(8). https://www.cdc.gov/

Sahin, U., Karikó, K., & Türeci, Ö. (2014). MRNA-based therapeutics-developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759–780. https://doi.org/10.1038/nrd4278

Sette, A., & Crotty, S. (2021). Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 184(4), 861–880. https://doi.org/10.1016/j.cell.2021.01.007

Smith, D. R. (2019). Herd Immunity. Veterinary Clinics of North America - Food Animal Practice, 35(3), 593–604. https://doi.org/10.1016/j.cvfa.2019.07.001

Talotta, R. (2021). Do COVID-19 RNA-based vaccines put at risk of immune- mediated diseases? In reply to “potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases.†Clinical Immunology, 224, 108665. https://doi.org/10.1016/j.clim.2021.108665

Thanh Le, T., Andreadakis, Z., Kumar, A., Gómez Román, R., Tollefsen, S., Saville, M., & Mayhew, S. (2020). The COVID-19 vaccine development landscape. Nature Reviews. Drug Discovery, 19(5), 305–306. https://doi.org/10.1038/d41573-020-00073-5

Ulmer, J. B., & Geall, A. J. (2016). Recent innovations in mRNA vaccines. Current Opinion in Immunology, 41, 18–22. https://doi.org/10.1016/j.coi.2016.05.008

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181(2), 281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058

Walsh, E. E., Frenck, R. W., Falsey, A. R., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Mulligan, M. J., Bailey, R., Swanson, K. A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P.-Y., Türeci, Ö., Tompkins, K. R., … Gruber, W. C. (2020). Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. New England Journal of Medicine, 383(25), 2439–2450. https://doi.org/10.1056/nejmoa2027906

Wrapp, D., Wang, N., Corbett. S, K., Goldsmith. A, J., Hsieh, C.-L., Abiona, O., Graham. S, G., & McLellan. S, J. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. February, 1–9.

Yang, L., Liu, S., Liu, J., Zhang, Z., Wan, X., Huang, B., Chen, Y., & Zhang, Y. (2020). COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduction and Targeted Therapy, 5(1), 1–8. https://doi.org/10.1038/s41392- 020-00243-2

Zhang, C., Maruggi, G., Shan, H., & Li, J. (2019). Advances in mRNA Vaccines for Infectious Diseases. 10(March), 1–13. https://doi.org/10.3389/fimmu.2019.00594

Zhou, X., Jiang, X., Qu, M., Aninwene, G. E., Jucaud, V., Moon, J. J., Gu, Z., Sun, W., & Khademhosseini, A. (2020). Engineering antiviral vaccines. ACS Nano, 14(10), 12370–12389. https://doi.org/10.1021/acsnano.0c06109

Zhu, F. C., Li, Y. H., Guan, X. H., Hou, L. H., Wang, W. J., Li, J. X., Wu, S. P., Wang, B. Sen, Wang, Z., Wang, L., Jia, S. Y., Jiang, H. D., Wang, L., Jiang, T., Hu, Y., Gou, J. B., Xu, S. B., Xu, J. J., Wang, X. W., … Chen, W. (2020). Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. The Lancet, 395(10240), 1845–1854. https://doi.org/10.1016/S0140-6736(20)31208-3

Ziemniak, M., Strenkowska, M., Kowalska, J., & Jemielity, J. (2013). Potential therapeutic applications of RNA cap analogs. Future Medicinal Chemistry, 5(10), 1141–1172. https://doi.org/10.4155/fmc.13.96

Zost, S. J., Gilchuk, P., Case, J. B., Binshtein, E., Chen, R. E., Nkolola, J. P., Schäfer, A., Reidy, J. X., Trivette, A., Nargi, R. S., Sutton, R. E., Suryadevara, N., Martinez, D. R., Williamson, L. E., Chen, E. C., Jones, T., Day, S., Myers, L., Hassan, A. O., … Crowe, J. E. (2020). Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 584(7821), 443–449. https://doi.org/10.1038/s41586-020-2548-6

Zost, S. J., Gilchuk, P., Chen, R. E., Case, J. B., Reidy, J. X., Trivette, A., Nargi, R. S., Sutton, R. E., Suryadevara, N., Chen, E. C., Binshtein, E., Shrihari, S., Ostrowski, M., Chu, H. Y., Didier, J. E., MacRenaris, K. W., Jones, T., Day, S., Myers, L., … Crowe, J. E. (2020). Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 26(9), 1422–1427. https://doi.org/10.1038/s41591-020-0998-x

Downloads

Published

2022-08-10