Black Liquor sebagai Sumber Energi Baru Terbarukan dari Industri Pulp dan Kertas

Authors

  • Rahmat Hidayat Universitas Pertahanan Republik Indonesia
  • M. Ikhwan Syahtaria Universitas Pertahanan Republik Indonesia

DOI:

https://doi.org/10.31316/jk.v7i1.4784

Abstract

Abstrak

Kebutuhan energi industri pulp dan kertas mengalami pertumbuhan dengan rata-rata 2,49% per tahun dari 108,5 juta SBM pada tahun 2018 menjadi 135,4 juta SBM pada tahun 2027 sehingga industry pulp kertas dikategorikan sebagai industri dengan pemakaian energi yang lumayan besar. Oleh karena itu diperlukan sebuah metode terbaru dalam penggunaan teknologi pada industry tersebut sehingga dapat menghasilkan efisiensi tinggi yang pada akhirnya mampu mengurangi pemakaian energi. Hingga saat ini lindi hitam (black liquor) dari pabrik pulp kertas di Indonesia masih belum banyak digunakan secara optimal sebagai bahan bakar boiler. Upaya pemanfaatan black liquor dan penggunaan teknologi yang efisien di industri pulp kertas mampu membantu mengurangi ketergantungan pada bahan bakar fosil serta dapat mereduksi emisi dari bahan bakar berbasis fosil. Panas pembakaran black liquor mencapai 13,8 MJ/kg pada proses recovery boiler. Dengan metode gasifikasi, energi yang diproduksi akan lebih tinggi karena dapat menghasilkan bahan bakar dan gas sintetis. Black liquor juga dapat menjadi sumber energi berkelanjutan yang diunggulkan, karena dapat dimanfaatkan untuk pembuatan gas hidrogen, biobriket, maupun untuk efisiensi energi pada industri pulp dan kertas.

Kata Kunci: Black Liquor, Pulp dan Kertas, Energi Terbarukan

 

Abstract

The energy needs of the pulp and paper industry increase by an average of 2.49% per year, from 108.5 million BOE in 2018 to 135.4 million BOE in 2027, so that it is an industry with quite large energy consumption. Therefore, it is necessary to innovate the use of technology with high efficiency so as to reduce energy use. Until now, black liquor from pulp and paper mills in Indonesia has generally not been utilized optimally as boiler fuel. Efforts to utilize black liquor and apply efficient technology in the pulp and paper industry can help reduce dependence on fossil fuels and reduce emissions from fossil fuels. The heat of combustion of black liquor reaches 13.8 MJ/kg in the recovery boiler process. With a gasification system, energy productivity will be higher because it can produce fuel and synthetic gas. Black liquor is also a superior source of sustainable energy because it can be used to produce hydrogen gas, biobriquettes, and improve energy efficiency in the pulp and paper industry.

Keywords: Black Liquor, Pulp and Paper, Renewable Energy

References

DAFTAR PUSTAKA

Andersson, E., & Harvey, S. (2006). System analysis of hydrogen production from gasified black liquor. Energy, 31(15), 3426–3434. https://doi.org/10.1016/j.energy.2006.03.015

Bajpai, P. (2014). Black Liquor Gasification. In Black Liquor Gasification. https://doi.org/10.1016/C2013-0-12854-1

Energy, D. O. F., & Technology, F. (2002). K UNGL Black Liquor Combustion in Kraft Recovery Boilers-Numerical Modelling Doctoral thesis by Reza Fakhrai Black Liquor Combustion in Kraft Recovery Boilers-Numerical Modelling Doctoral thesis by Reza Fakhrai Department of Material Science and Engineeri (Issue May).

Erwin. (2021). Implementasi Sistem ISO 14001 dalam Mendukung Pencapaian Kinerja Keberlanjutan Perusahaan di Industri Manufaktur Pulp dan Kertas di Indonesia. Research Paper, 3(2), 17–24.

Firmansyah, A., Achmad, D., Fauzi, N., Fardiansyah, M. I., Rizaldi, R., Pradana, A., & Vokasi, F. (2022). Industri Pulp Dan Kertas Sebagai Sumber Energi. 4(1), 20–27.

Hamsar, H., Helwani, Z., & Bahruddin, B. (2019). Simulasi Termodinamika Gasifikasi Black Liquor Pabrik Pulp Larut Kraft Sebagai Sumber Energi Terbarukan. Jurnal Sains Dan Teknologi, 16(2), 48. https://doi.org/10.31258/jst.v16.n2.p48-53

Heeres, A., Schenk, N., Muizebelt, I., Blees, R., De Waele, B., Zeeuw, A. J., Meyer, N., Carr, R., Wilbers, E., & Heeres, H. J. (2018). Synthesis of Bio-aromatics from Black Liquors Using Catalytic Pyrolysis. ACS Sustainable Chemistry and Engineering, 6(3), 3472–3480. https://doi.org/10.1021/acssuschemeng.7b03728

Jonathan Voss. (2019). © 2019. This manuscript version is made available under the Elsevier user license https://www.elsevier.com/open-access/userlicense/1.0/. Reseachgate, 95616(509), 1–21.

Jusuf, P. G., Purwono, S., & Tawfiequrahman, A. (2019). Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Permodelan Ekstraksi Lignin Mentah dari Black Liquor dengan Metode Asidifikasi pada pH Rendah. Jurusan Teknik Kimia, April, 1–1.

Kim, C. H., Lee, J. Y., Park, S. H., & Moon, S. O. (2019). Global trends and prospects of black liquor as bioenergy. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 51(5), 3–15. https://doi.org/10.7584/JKTAPPI.2019.10.51.5.3

Larson, E. D., Consonni, S., & Kreutz, T. G. (1998). Preliminary economics of Black liquor gasifier/gas turbine cogeneration at pulp and paper mills. Proceedings of the ASME Turbo Expo, 3(April 2000), 255–261. https://doi.org/10.1115/98-GT-346

Muweke, K., & Petrusson, F. (2019). Modelling Methanol Content in Condensates From a Black Liquor Evaporation Plant A case study of the SCA Östrand pulp mill.

Naqvi, M., Yan, J., & Dahlquist, E. (2010). Black liquor gasification integrated in pulp and paper mills: A critical review. Bioresource Technology, 101(21), 8001–8015. https://doi.org/10.1016/j.biortech.2010.05.013

Naqvi, M., Yan, J., & Dahlquist, E. (2012). Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO 2 capture. Bioresource Technology, 110, 637–644. https://doi.org/10.1016/j.biortech.2012.01.070

Nong, G., Chen, S., Xu, Y., Huang, L., Zou, Q., Li, S., Mo, H., Zhu, P., Cen, W., & Wang, S. (2014). Artificial photosynthesis of oxalate and oxalate-based polymer by a photovoltaic reactor. Scientific Reports, 4(SREP03572), 1–7. https://doi.org/10.1038/srep03572

Nong, G., Zhou, Z., & Wang, S. (2016). Generation of hydrogen, lignin and sodium hydroxide from pulping black liquor by electrolysis. Energies, 9(1). https://doi.org/10.3390/en9010013

Pratiwi, R. A., Utama, R. N., & Said, M. (2012). Pengaruh Penambahan Black Liquor Terhadap Sifat Fisik Briket Batubara. Jurnal Teknik Kimia, 18(4), 39–48.

Ridwan, M., Ulum, B., Muhammad, F., Indragiri, I., & Sulthan Thaha Saifuddin Jambi, U. (2021). Pentingnya Penerapan Literature Review pada Penelitian Ilmiah (The Importance Of Application Of Literature Review In Scientific Research). Jurnal Masohi, 2(1), 42–51. http://journal.fdi.or.id/index.php/jmas/article/view/356

Roy Ghatak, H. (2006). Electrolysis of black liquor for hydrogen production: Some initial findings. International Journal of Hydrogen Energy, 31(7), 934–938. https://doi.org/10.1016/j.ijhydene.2005.07.013

Sepfitrah, & Rizal, Y. (2015). Analisis Electrostatic Precipitator (Esp) Untuk Penurunan Emisi Gas Buang Pada Recovery Boiler. Jurnal APTEK, 7(1), 53–64. www.flowvision-energy.com

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(August), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Susantini, N. M., & Oktariani, R. (2021). Pemanfaatan Sludge dengan Campuran Black Liqour dan Tempurung Kelapa sebagai Bahan Pembuatan Biobriket. Journal of Applied Science (Japps), 3(1), 011–019. https://doi.org/10.36870/japps.v3i1.227

Syamsudin, Purwanti, S., & Rostika, I. (2007). Pemanfaatan Campuran Limbah Padat dengan Lindi Hitam dari Industri Pulp dan Kertas sebagai Bahan Biobriket. Buletin Selulosa, 42(2), 68–75.

Syamsudin, & Rizaluddin, A. T. (2021). Review on renewable energy sources based on thermal conversion in the pulp and paper industry. Proceedings The SATREPS Conference, 3(1), 37–46. https://publikasikr.lipi.go.id/index.php/satreps/article/view/639

Verrill, C. L. (2007). Evaporation principles and black liquor properties. TAPPI Kraft Recovery Course 2007, 1, 151–170.

Downloads

Published

2023-05-02

Issue

Section

Articles