Design Transportasi Alternatif Dengan Energi Ramah Lingkungan yang Sesuai Dengan Geografi Indonesia
DOI:
https://doi.org/10.31316/jk.v7i1.4978Abstract
Abstrak
Desain bus bertenaga listrik pada sistem transportasi sebuah kota dapat menjadi prospek mengganti bus berbahan bakar fosil konvensional dengan bus listrik yang didukung oleh energi matahari dan listrik yang disediakan oleh PLN. Untuk tujuan ini, kami mendesain dan menyelidiki lima wacana berbeda untuk memanfaatkan tenaga surya yang tersedia: (1) panel surya dipasang di atap halte bus, (2) panel surya dipasang di ruang terbuka yang tidak terpakai di ruang publik, dan (3) jalan surya, yaitu jalan yang dibangun dengan bahan fotovoltaik (PV). (4) Panel surya dipasang diatas danau, sungai ataupun laut. (5) Panel surya dipasang di atas bus. Analisis kelayakan awal menunjukkan bahwa lima skenario berkontribusi untuk memenuhi permintaan transportasi bus listrik, secara proporsional dengan ukurannya skenario (5) menyajikan biaya modal terendah dalam kaitannya dengan pembangkitan energi. Oleh karena itu, kami mengeksplorasi lebih lanjut skenario ini dengan melakukan simulasi operasi hariannya termasuk tindakannya dalam membeli dan menjual energi ke jaringan PLN, bila ada surplus energi. Secara keseluruhan, hasilnya menunjukkan bahwa, meskipun biaya modalnya tinggi, skema transportasi bertenaga surya menghadirkan alternatif yang layak untuk mengganti bus konvensional.
Kata Kunci: Bus, Tenaga Surya, Analisis Kelayakan, Transportasi Alternatif
Abstract
The design of an electric-powered amphibious bus in a city's transportation system can be a prospect of replacing conventional fossil fuel buses with electric buses powered by solar energy and electricity provided by PLN. To this end, we designed and investigated five different discourses for utilizing available solar power: (1) solar panels installed on roofs of bus stops, (2) solar panels installed in unused open spaces in public spaces, and (3) roads solar, i.e., roads built with photovoltaic (PV) materials. (4) Solar panels are installed above lakes, rivers, or seas. (5) Solar panels installed on top of the bus. Preliminary feasibility analysis shows that the five scenarios contribute to meeting demand for electric bus transportation, in proportion to their size scenario (5) presents the lowest capital cost in relation to energy generation. Therefore, we explore this scenario further by simulating its daily operations including its actions in buying and selling energy to the PLN grid, when there is an energy surplus. Overall, the results show that, despite the high capital costs, solar-powered transport schemes present a viable alternative to conventional buses.
Keywords: Bus, Solar Power, Feasibility Analysis, Transportation Alternatives
References
DAFTAR PUSTAKA
Gao, Z. L. (2017). Battery capacity and recharging needs for electric buses in city transit service. Energy, 122, 588-600.
Ioannidis, R. I. (2019). Solar-powered bus route: introducing renewable energy into a university campus transport system. Advances in Geosciences, 49, 215-224.
Ioannidis, R. I. (2019). Solar-powered bus route: introducing renewable energy into a university campus transport system. Advances in Geosciences, 49, 215-224.
Khalid Mehmood, K. K. (2017). Optimal sizing and allocation of battery energy storage systems with wind and solar power DGs in a distribution network for voltage regulation considering the lifespan of batteries. IET Renewable Power Generation, 11(10), , 1305-1315.
Kirtley, J. L. (2020). Electric power principles: sources, conversion, distribution and use. John Wiley & Sons.
Kurniawan, A. (2021). Perancangan Pembangkit Listrik Tenaga Hybrid (Photovoltaic–Mikrohidro) Menuju Desa Mandiri Energi (Doctoral dissertation, UMSU).
Li, Y. S. (2020). Exploiting electrical transients to quantify charge loss in solar cells. Joule, 4(2), 472-489.
Mallon, K. R. (2017). Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan. Energies, 10(7), 943.
Michael Parningotan Sitohang, M. (2019). Perancangan Pembangkit Listrik Tenaga Surya (Plts) Terpusat Off-Grid System (Studi Kasus: Desa Tanjung Beringin, Kabupaten Kampar, Riau) (Doctoral dissertation, Universitas Islam Negeri Sultan Syarif Kasim Riau).
Michalopoulou, M. D. (2022). The Significance of Digital Elevation Models in the Calculation of LS Factor and Soil Erosion. Land, 11(9), 1592.
Mohamad Dwi, Y. (2022). Analisis Pembangkit Daya Listrik Dari Temperature Rem Menggunakan Generator Termoelektrik Sebagai Tambahan Untuk Energi Bus Listrik (Doctoral dissertation, UNSADA).
Nicolaides, D. C. (2018). An urban charging infrastructure for electric road freight operations: A case study for Cambridge UK. IEEE Systems Journal, 13(2), 2057-2068.
Nordelöf, A. R. (2019). Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel. Transportation Research Part D: Transport and Environment, 75, 211-222.
Nwaigwe, K. N. (2019). An overview of solar power (PV systems) integration into electricity grids. Materials Science for Energy Technologies, 2(3), 629-633.
Rinaldi, R. R. (2018). Desain kapal amfibi water school bus sebagai sarana transportasi pelajar untuk rute pelayaran kepulauan seribu-jakarta utara. Jurnal Teknik ITS, 7(1), G65-G69.
Sari, G. K. (2022). INTEGRASI PEMBANGUNAN IBU KOTA NEGARA BARU DAN DAERAH PENYANGGANYA. STANDAR: Better Standard Better Living, 1(2), 27-32.
Sianipar, C. P. (2022). Environmentally-appropriate technology under lack of resources and knowledge: Solar-powered cocoa dryer in rural Nias, Indonesia. Cleaner Engineering and Technology, 8, 100494.
Singh, I. &. (2019). A review on solar energy collection for thermal applications. International Journal of Advance and Innovative Research, 6 (2019), 252-259.
Suherman, B. L. (2022). Buku Ajar Konversi Energi Listrik. Yayasan Kita Menulis.
Suparlan, M. S. (2019). Prototipe Battery Charge Controller Solar Home System Di Desa Ulak Kembahang 2 Kecamatan Pemulutan Barat Kabupaten Ogan Ilir. Applicable Innovation of Engineering and Science Research (AVoER), 658-665.
Syaputra, E. (2020). Perancangan Teknologi Publik Tempat Sampah Pintar Bertenaga Solar sel Berbasis Mikrokontroller Arduino Uno (Doctoral dissertation, UMSU).
Tambunan, H. B. (2020). Sistem Pembangkit Listrik Tenaga Surya. Deepublish.
Vepsäläinen, J. R. (2018). Energy uncertainty analysis of electric buses. Energies, 11(12), 3267.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Anugrah Endy, Sovian Aritonang, Gita Amperiawan, Erzi Agson Gani, Ade Bagdja, Sjafrie sjamsoeddin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
-
The journal allow the authors to hold the copyright without restrictions and allow the authors to retain publishing rights without restrictions.
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
This work is licensed under a Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.